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ABSTRACT: In 2016, the Movement Disorder Society
Task Force for the Nomenclature of Genetic Movement
Disorders presented a new system for naming genetically
determined movement disorders and provided a criterion-
based list of confirmed monogenic movement disorders.
Since then, a substantial number of novel disease-causing
genes have been described, which warrant classification
using this system. In addition, with this update, we further
refined the system and propose dissolving the imaging-
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based categories of Primary Familial Brain Calcification
and Neurodegeneration with Brain Iron Accumulation and
reclassifying these genetic conditions according to their
predominant phenotype. We also introduce the novel cat-
egory of Mixed Movement Disorders (MxMD), which
includes conditions linked to multiple equally prominent
movement disorder phenotypes. In this article, we present
updated lists of newly confirmed monogenic causes of
movement disorders. We found a total of 89 different newly
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identified genes that warrant a prefix based on our criteria;
6 genes for parkinsonism, 21 for dystonia, 38 for dominant
and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for
spastic paraplegia, 3 for paroxysmal movement disorders,
and 6 for mixed movement disorder phenotypes; 10 genes
were linked to combined phenotypes and have been
assigned two new prefixes. The updated lists represent a
resource for clinicians and researchers alike and they have
also been published on the website of the Task Force for
the Nomenclature of Genetic Movement Disorders on the

o

homepage of the International Parkinson and Movement
Disorder Society (https://www.movementdisorders.org/
MDS/About/Committees—Other-Groups/MDS-Task-Forces/
Task-Force-on-Nomenclature-in-Movement-Disorders.
htm). © 2022 The Authors. Movement Disorders published
by Wiley Periodicals LLC on behalf of International
Parkinson Movement Disorder Society.
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Originally, locus symbols (eg, DYT1) were used to
specify chromosomal regions that had been linked to
a familial disorder or a specific phenotype with an as
yet unknown gene.! These symbols were systemati-
cally assigned in a numerical order (eg, PARKI,
PARK2, etc.) and were regularly used by clinicians
and researchers in lieu of the name for the condition
(eg, DYT1 dystonia), even when the disease-causing
gene (eg, TOR1A for DYT1) had been identified.
This system has a number of weaknesses, making it
unsuitable to use as a reference.”’ Therefore, the
International Parkinson and Movement Disorder
Society (MDS) initiated the Task Force for the
Nomenclature of Genetic Movement Disorders to fix
this “broken system.” Thus, new recommendations
and lists of monogenic movement disorders based on
these recommendations were published in 2016.°
Since then, both our knowledge and techniques of
gene discovery have evolved enormously. Next-
generation sequencing techniques have found their
way into clinical and research settings, resulting in a
large number of newly identified (potentially) disease-
causing genes and genetic variants reported in the lit-
erature. The interpretation of these genes and novel
gene variants, particularly their pathogenicity,
remains challenging. Some newly identified genes are
just reported in a few individuals or small families,
and sometimes the same variants are also found in
controls and healthy family members, albeit at a
lower frequency, whereas large families with convinc-
ing segregation are often missing. Further, reduced
penetrance and phenocopies are used to explain
imperfect segregation. Another challenge relates to
the distinction between variants that are disease-
causing versus variants that confer an increased risk,
as the boundaries are often blurred. Unconfirmed
genes may be rapidly included in multigene panels for
a given phenotype, which carries a risk of diagnostic
results that are often difficult to interpret. Thus, a
systematic approach to critically evaluate newly
reported genes and updated lists of monogenic move-
ment disorders based on our standardized criteria
appear warranted.

What’s Known?

The MDS Task Force for the Nomenclature
of Genetic Movement Disorders and its
Mandate

When the MDS Task Force first convened, its initial
mandate was to revise the naming system of genetic
movement disorders. For this, a team of clinical neurol-
ogists and genetic experts from the field of movement
disorders, supported by additional input from journal
editors, medical experts from fields with already existing
naming systems, representatives from GeneReviews, and
the MDS membership developed rules for a new naming
system and created lists for single-gene disorders known
to cause several movement disorder phenotypes. This
article expands these previously created lists and
improves the naming system further. To achieve this, the
newly published literature was systemically screened and
curated. The recommendations were applied to newly
reported gene—disease associations, carefully evaluated,
and extensively discussed among the Task Force mem-
bers and external experts when needed. Eventually,
genes with convincing evidence were added by consensus
to the respective phenotype lists. Genes that have yet to
be confirmed are listed in the Supplementary tables.

Rules and Recommendations for the
Nomenclature of Genetic Movement Disorders

Recommendations of the MDS Task Force for the
revised naming system of genetic movement disorders
have been described previously.® Briefly: (1) The list
only includes disorders for which a causative gene has
been identified. (2) Genes will be assigned a movement
disorder prefix if the phenotype (eg, parkinsonism for
PARK) is a prominent feature of the disease linked to
pathogenic variants (also referred to as mutations) in
that gene in the majority of cases. If two different
movement disorders generally coexist with equal prom-
inence or if a gene causes two different movement dis-
order phenotypes not necessarily coexisting but both as
a prominent feature in about half of the patients, a dou-
ble prefix should be assigned (eg, DYT/PARK-
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ATP1A3). If an additional movement disorder is pre-
sent but less prevalent, no additional prefix is assigned
but a cross reference is made between lists. (3) In addi-
tion to the phenotype-driven prefix, the naming system
for each listed genetic disorder requires the name of the
mutated gene (eg, DYT-TOR1A for dystonia caused by
mutations in the TOR1A gene. (4) A prefix will only be
assigned to disease-causing genes (as in monogenic disor-
ders) and not to genetic risk factors. (5) Before including
a gene in the list and assigning a prefix, a certain level of
evidence for a genotype—phenotype association must be
met (for details see Methods section).

What’s New?

In this update, we focused on the three areas
outlined below

(1) We updated the previously published®> lists of
monogenic movement disorders. Through an extensive
literature search, newly discovered disease-causing
genes were identified and added for all movement disor-
der phenotypes covered by this Task Force. We identi-
fied 6 genes for parkinsonism (Table 1), 21 for dystonia
(Table 2), 38 for dominant and recessive ataxia
(Table 3), 5 for chorea (Table 4), 7 for myoclonus
(Table 5), 13 for spastic paraplegia (Table 6), 3 for par-
oxysmal movement disorders (Table 7), and 6 for
mixed movement disorder phenotypes (Table 8). As
stated earlier, whenever a gene caused two different
types of movement disorders with similar prevalence, a
double prefix was assigned. When, however, a gene
caused more than two different movement disorders
and it was impossible to identify a consistent “core phe-
notype”, we placed this gene in the newly added group
of Mixed Movement Disorders (MxMD).

(2) Even after applying the previously developed
criteria,” evaluating the evidence to support a causal
gene—disease association was challenging, particularly
for a more common disorder such as Parkinson’s dis-
ease (PD). We thus piloted the application of an
evidence-based framework developed by the Clinical
Genome Resource (ClinGen)®” to evaluate gene—disease
associations using PD as an example (for details refer
to the Methods section).

(3) Our initial set of recommendations assigned the
prefixes NBIA for Neurodegeneration with Brain Iron
Accumulation (NBIA) and PFBC for Primary Familial
Brain Calcifications (PFBC) to genes linked to a move-
ment disorder phenotype and characteristic imaging
findings (evidence of brain iron accumulation for
NBIA and cerebral calcification for PFBC). With this
update, we decided to classify genes and phenotypes
exclusively based on their clinical presentation and
avoid the use of ancillary tests, such as imaging find-
ings. This led to the reclassification of the genes

previously assigned an NBIA or PFBC according to
their predominant movement disorder phenotype.
Nonetheless, since we acknowledge that imaging can
be a distinguishing factor for these entities, we have
added the suffix NBIA or PFBC and highlighted the
imaging findings in the clinical features column where
appropriate  (eg, DYT-PANK2-(NBIA), PARK-
SLC20A2-(PFBC)).

Methods

Literature Search

We performed a systematic literature search using stan-
dardized search terms (Table S1) and the National Center
for Biotechnology Information’s PubMed database
(https://www.ncbi.nlm.nih.gov/pubmed). We searched for
articles published until August 31, 2020 that reported
patients with different movement disorders carrying
genetic variants in newly identified and potentially
disease-causing genes. We also evaluated relevant papers
cited in the included articles. All listed articles were
screened stepwise by title, abstract, and full text. All arti-
cles reporting at least one patient with a movement disor-
der carrying a potentially pathogenic variant in a newly
identified gene were evaluated in detail. Another brief lit-
erature search focusing on unconfirmed candidate genes
was conducted in May 2021 (search term: “[name of the
gene| AND [disease in question]”) and again in September
2021 in order to update previously curated lists.

Data Collection Process

We collected information on the number of affected and
unaffected mutation carriers for each identified gene. For
affected individuals, we further extracted data on the pre-
dominant phenotype as well as associated movement dis-
orders or other non-movement disorder features. To
evaluate the pathogenicity of variants in a gene, we addi-
tionally collected evidence for segregation, as well as addi-
tional molecular and functional evidence (see later).

Evaluation of Pathogenicity and Gene-Disease
Association

To evaluate the involvement of a gene in causing a
movement disorder, we assessed the previously described
criteria®: (1) the presence of variants within one gene in
multiple, unrelated affected individuals, reported by at
least two independent groups; (2) evidence for segrega-
tion or a statistical association of the gene with disease
proven by gene-wide burden analysis; and (3) variants
with an in silico prediction to alter the normal biochemi-
cal effect of a gene product, further supported by func-
tional evidence in human tissue, well-established cellular
or animal models, or other biochemical or histological
abnormalities. Once this information was extracted, all
available data were discussed and evaluated by Task
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TABLE 2 Recently identified or confirmed forms of hereditary dystonia

Designation

Less common
movement
phenotype

Clinical clues

OMIM

MOI

Isolated dystonia
DYT-ANO3%>*

DYT-EIF2AK2°°%7

DYT-HPCA****

DYT-KMT2B"*+""7!

DYT-VPS16™>7°

Combined dystonia

DYT-COX20"%78

DYT-DNAJC12*%7%0

DYT-SLC39A 1451784

DYT/CHOR-GNAO18%8°

MYC/DYT-KCTD17%7-%¢

Complex dystonia

DYT-MECR’"??

(Head) tremor,
myoclonus

Ataxia

Parkinsonism

Parkinsonism

Myoclonus

Cranial-cervical dystonia, variable age at onset

Early-onset, mostly generalized dystonia including
laryngeal involvement, may be accompanied by
leukoencephalopathy, spasticity, and
developmental delay

Childhood-onset generalized dystonia and
adolescence-onset segmental dystonia; first
affecting the distal limbs and later involving
neck, orofacial and craniocervical regions,
dysarthria, febrile seizures, and developmental
delay in one case

Childhood-onset, generalized dystonia, usually
first affecting the lower limbs,

variable additional signs including developmental
delay, microcephaly, intellectual disability, facial
dysmorphia

Early-onset generalized dystonia, mild to
moderate intellectual disability and
neuropsychiatric symptoms in a subset of
patients

Mitochondrial complex IV deficiency nuclear
type 11;

hypotonia, gait ataxia, dysarthria, and sensory
neuropathy

Hyperphenylalaninemia and developmental delay.
Phenotype can also include non-progressive or
mild levodopa-responsive parkinsonism

Hypermagnesemia, dysarthria, and generalized
dystonia, MRI: T1 hyperintense, diffuse, non-
enhancing signal of basal ganglia

Hypotonia and motor delay, exacerbated by
febrile illness, stress, high ambient temperature

Onset of mild myoclonic symptoms in the first or
second decade of life, followed by later onset of
progressive dystonia with predominant
involvement of the cranial and laryngeal
muscles; dystonia dominates the clinical picture

Dystonia, childhood-onset, with optic atrophy
and basal ganglia abnormalities (DYTOABG);

MRUI: basal ganglia signal abnormalities, T2
hyperintense signal in putamen and globus
pallidus, cystic changes in putamen

615034

618877

224500

617284

619291

619054

617384

617013

617493

616398

617282

AD

AD, AR

AD

(Continues)
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TABLE 2 Continued

Less common
movement

Designation phenotype

Clinical clues

OMIM

MOI

DYT-OPA 17>%* Ataxia

DYT/CHOR-ADAR™° Spasticity

ATX/DYT-SQSTM1”7% Chorea

Dystonia presenting with deafness
DYT-ACTB,”*'?

DYT-BCAP31'%1%
DYT-FITM2 112

DYT-SERACT'3!15

Dystonia presenting with developmental delay
DYT-IRF2BPL'* "

DYT-VAC14120-123
DYT/CHOR-FOXG112+1%¢

Ataxia

Dyskinesia

Optic atrophy, peripheral neuropathy, myopathy,
and progressive external ophthalmoplegia

Aicardi—Goutiéres syndrome, includes dystonia
and spastic paraparesis, MRI may reveal isolated
bilateral striatal necrosis, adult-onset
psychological difficulties, linked to characteristic
interferon signature (upregulation of interferon-
stimulated genes)

Neurodegeneration with ataxia, dystonia, and
gaze palsy (NADGP): gait ataxia, cognitive
decline, oculomotor abnormalities including
vertical gaze palsy and nystagmus, dysarthria
and hypergonadotropic hypogonadism

Sensorineural hearing loss, generalized dystonia,
skeletal abnormalities

Deatness, central hypomyelination, microcephaly,
ophthalmoplegia, intellectual disability

Global developmental delay, sensorineural hearing
loss, poor growth, and low body mass index

3-Methylglutaconic aciduria with deafness,
encephalopathy, and Leigh-like syndrome
(MEGDEL);

sensorineural hearing loss, delayed psychomotor
development, increased excretion of
3-methylglutaconic acid, transient liver
dysfunction in the neonatal period, MRI:
bilateral basal ganglia hyperintensities

Developmental delay, hypotonia, seizures,
pyramidal signs, dysarthria

Neurodegeneration, ataxia, dysarthria, hypotonia

Rett-like phenotype (with congenital
encephalopathy)

615010

617145

607371

300475

618635

614739

618088

617054
613454

AD

AR, rarely AD

AR

AD

XLD

AR

AR

AD

AR
AD

OMIM, Online Mendelian Inheritance in Man (https://www.omim.org/about); MOI, mode of inheritance; AD, autosomal dominant; AR, autosomal recessive; MRI, magnetic

resonance imaging; XLD, X-linked dominant.

“This gene has also been linked to Baraitser—Winter syndrome 1 (OMIM 243310).

Force members. In the few cases where uncertainty
remained, external experts were consulted.

Recently, an evidence-based framework for evaluat-
ing gene—disease associations has been developed by
the United States’ National Institutes of Health-
supported ClinGen program.®’ We decided to employ
these previously published criteria to evaluate ambigu-
ous, newly reported PD genes, since here interpreting
the pathogenicity was particularly challenging due to
the frequently observed reduced penetrance®” and
high rate of phenocopies (5%).'"° The proposed

framework is based on the evaluation of relevant
genetic and experimental evidence supporting or con-
tradicting a gene—disease relationship, leading to a
qualitative  classification:  “Definitive  Evidence”,
“Strong Evidence”, “Moderate Evidence”, “Limited
Evidence”, “No Reported Evidence”, or “Conflicting
Evidence” (for details see ClinGen’s Standard Operat-
ing Procedure (SOP) https://clinicalgenome.org/site/
assets/files/5391/gene_curation_sop_pdf-1.pdf). Only
genes with a strong or definitive gene—disease associa-
tion were included in our list of genes causing PD.
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4( NOMENCLATURE OF GENETIC MOVEMENT DISORDERS - AN UPDATE

Genes that have been associated with a movement
disorder-predominant phenotype but did not meet the
criteria for a confirmed genotype-phenotype relation-
ship are listed as unconfirmed candidate genes
(Supplementary material).

Results

Applying the Recommendations

A full list of all genes, including genes previously
included®  (https://www.movementdisorders.org/MDS/
About/Committees—Other-Groups/MDS-Task-Forces/
Task-Force-on-Nomenclature-in-Movement-Disorders.
htm) as well as yet unconfirmed candidate genes can be
found in the Supplementary material (Tables S2-S7).
Here we describe newly confirmed genes that cause
movement disorders.

Genetically Determined Parkinsonism

The literature search for hereditary parkinsonism
yielded >5000 publications in which genetic variants

TABLE 4  Recently identified or confirmed forms of hereditary chorea

Less common

Designation movement phenotype

Clinical clues

that are potentially associated with monogenic PD have
been reported in over 80 genes. The majority of these
genes have been reported only once, often in single spo-
radic cases, and thus remain to be confirmed (see Sup-
plementary material). Twenty genes were already
known causes of other non-parkinsonian disease enti-
ties; however, predominant features of typical or atypi-
cal parkinsonism have been described in several
patients, indicating that the phenotypic spectrum of
these entities should be expanded to include parkinson-
ism. Based on our criteria, these genes do not warrant a
PARK prefix; however, for six of these genes, typical or
atypical parkinsonism has been repeatedly reported to
be a predominant feature in a subset of patients. Thus,
we list C9o0rf72, DNAJC12, EPM2A, GRN, MAPT,
and PDESB in the category of genes that usually show
a different phenotype but can have predominant par-
kinsonism in a subset of patients. Finally, 18 genes
(Table 1 and Table S2) have been reported repeatedly
in several unrelated patients or families, or by indepen-
dent research groups, and were therefore classified as
potential novel monogenic causes of parkinsonism.

OMIM MOI

CHOR-PDE10A**7>*

hypotonia, chorea, ballism, variable
orofacial dyskinesia, variable

Recessive form: childhood onset axial

616921 (AR), AR and AD,
616922 (AD)  often
de novo

cognition, and normal brain MRI

Dominant form: slowly progressive
chorea with normal cognition, brain
MRI with bilateral T2 striatal
hyperintensity

Combined phenotypes: where chorea

coexists with (an)other movement disorder(s) as a prominent and consistent feature

DYT/CHOR-ADAR’> Spasticity

Aicardi—Goutieres syndrome, includes

615010 AR, rarely AD

dystonia and spastic paraparesis, MRI
may reveal isolated bilateral striatal

necrosis, adult-onset psychological

difficulties, linked to characteristic

interferon signature (upregulation of
interferon-stimulated genes)

DYT/CHOR-FOXG1'?*"*®  Dyskinesia

Rett-like phenotype (with congenital

613454 AD

encephalopathy)

DYT/CHOR-GNAOT*****  Myoclonus

Hypotonia, motor delay. Exacerbated

617493 AD

by febrile illness, stress, high ambient
temperature

ATX/CHOR-RNF2162%0-248

Huntington-like disorder, chorea

212840 AR

develops in second or third decade,

gait ataxia, nystagmus, dysarthria and
dysmetria. Hypogonadotropic
hypogonadism

OMIM, Online Mendelian Inheritance in Man (https://www.omim.org/about); MOI, mode of inheritance; AD, autosomal dominant; AR, autosomal recessive; MRI, magnetic

resonance imaging.
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TABLE 6 Recently identified or confirmed forms of hereditary spastic paraplegia

Less common

movement Clinical clues/clinical phenotype and
New designation phenotype comment OMIM MOI
Autosomal dominant forms
HSP-CPT1C*77*78 Pure HSP, variable age at onset (infantile to 616282 AD
adulthood), slowly progressive disease course
HSP-UBAP1>"°% Typically pure HSP, juvenile-onset, toe- 618418 AD

walking, sometimes complicated by
cerebellar signs or mild cognitive
impairment, eventual association with
parkinsonism and learning difficulties (needs
to be confirmed)

Autosomal recessive forms

HSP-ENTPD1*%+2%> Complex HSP, infancy or childhood onset 615683 AR
with white matter change, intellectual
impairment, dysarthria, and gait ataxia

HSP-HPDI 2% (1) Pure HSP, mostly juvenile onset, 619027 AR
sometimes myalgia or mild dysarthria
(2) Severe neurodevelopmental disorder with
progressive spasticity and brain white matter
abnormalities (NEDSWMA; OMIM
619026)

HSP-MAG*%® Complex HSP, infantile-onset Pelizaeus— 616680 AR
Merzbacher disease-like phenotype, mental
retardation, dysarthria, optic atrophy,
peripheral neuropathy, demyelinating
leukodystrophy

HSP-PCYT2*%"2% Complex HSP, infancy-onset global 618770 AR
developmental delay, motor impairment,
and progressive spasticity of mainly lower
limbs, severe gait impairment or inability to
walk (never achieved or lost), additional
features including impaired intellectual
development with language difficulties,
ocular anomalies, and seizures; frequently
brain imaging abnormalities (cerebral and
cerebellar atrophy and white matter
hyperintensities)

HSP-RNF170%%12%2 Complex HSP, predominantly lower limb AR
spastic paraparesis with mild upper limb
involvement, age at onset before 5 years,
optic atrophy, variable features include
cerebellar involvement, mild cervical
dystonia, and axonal sensorimotor

polyneuropathy

Autosomal dominant or recessive forms

HSP-ALDH18A 1% Dominant form: pure or complex HSP, 601162 (AD), AD or AR
cognitive impairment, congenital cataract, 616586 (AR)

dysarthria, cerebellar signs, neuropathic pain,
epilepsy, infantile psychosis, sensorineural
hearing loss, vomiting, biochemical features
of delta-1-pyrroline-5-carboxylate synthase
deficiency

(Continues)
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TABLE 6 Continued

Less common
movement
phenotype

Clinical clues/clinical phenotype and

New designation comment

OMIM MOI

Recessive form: complex HSP, early-onset,
delayed psychomotor development,
cognitive impairment, variable additional
features including dysmorphic facial features,
tremor, and urinary incontinence

X-Linked forms

HSP-SLC16A42>%°72% Dystonia Complex HSP; Allan-Herndon-Dudley
syndrome (ADHS); abnormal thyroid
function (elevated T3 and low T4 levels),

severely intellectual impairment, delayed

300523 XL

developmental milestones, dysmorphic
facies, dysarthria, athetoid movements,
muscle hypoplasia, and spastic paraplegia

Combined phenotypes: where HSP coexists with another movement disorder as a prominent consistent feature

HSP/ATX-CAPN1**2%° Pure or complex HSP, cerebellar ataxia, 616907 AR
dysarthria, foot deformities, ocular
movement abnormalities, peripheral

neuropathy, amyotrophy

HSP/ATX-UCHL1>°3"! Complex HSP, progressive visual loss and
optic atrophy may be an early and
prominent manifestation, variable additional

features as peripheral neuropathy, cerebellar

615491 AR

ataxia, cognitive impairment, axonal
sensorimotor polyneuropathy, facial
dysmorphism, microcephaly, fasciculations
(tongue and limb muscles), and abnormal
MRI findings including cerebellar and mild
cerebral atrophy

ATX/HSP-KCNA2? 222392 Myoclonus Variable phenotypic spectrum including AD
complex HSP, ataxia, intellectual and
learning disability, developmental delay,
dysarthria, sensory-motor peripheral
neuropathy, abnormal EEG without clinical

seizures

ATX/HSP-VPS13D*’ Dystonia, Variable phenotypic spectrum ranging from AR
adult-onset pure form of HSP to childhood-

chorea onset complicated form of HSP with

myoclonus,

additional cerebellar ataxia, dystonia,
cataracts, and chorioretinal dystrophy

OMIM, Online Mendelian Inheritance in Man (https://www.omim.org/about); MOI, mode of inheritance; HSP, hereditary spastic paraplegia; AD, autosomal dominant;
AR, autosomal recessive; XL, X-linked; MRI, magnetic resonance imaging; EEG, electroencephalogram.

*Allelic with Pelizacus—Merzbacher disease.

"Mutations in this gene can also cause autosomal dominant sensory ataxia (OMIM 608984).

“Mutations in this gene can also cause autosomal dominant cutis laxa type 3 (OMIM 616603) and autosomal recessive cutis laxa type IIIA (OMIM 219150).

“Mutations in this gene can also cause developmental and epileptic encephalopathy 32 (DEE32, OMIM 616366).

Notably, several of these genes had already been
assigned a PARK locus designation (by the previous ad
hoc locus system). However, over time, follow-up studies
and expert reviews have raised doubts and the evidence
for many of these genes has been questioned.''™® For
the majority of these genes, some of which were initially

reported several years ago, the evidence is still not fully
convincing or even became conflicting. A full list of
genes still under debate can be found in the Supplemen-
tary material (Table S2). Based on our interpretation,
supported by the ClinGen gene—disease curation criteria,
we added four genes to the list of confirmed monogenic
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causes of parkinsonism. One of these genes, CHCHD2,
causes typical levodopa-responsive parkinsonism very
similar to idiopathic PD, whereas the other three,
DCTN1, RAB39B, and VPS13C, cause a rather atypical
parkinsonian phenotype with additional clinical features
(Table 1). Interestingly, biallelic variants in the VPS13C
gene have also been reported in patients with early-onset
and autopsy-confirmed dementia with Lewy bodies
(DLB), however, further research is necessary to confirm
this association.'*

Additionally, four of the six genes that were previ-
ously listed as primary familial brain calcification genes
were reclassified, and are now included in our updated
list of hereditary parkinsonism (Table 1). Two of these
genes, JAM2 and SLC20A2, cause a phenotype with
predominant atypical parkinsonism in the majority of
cases and have therefore been assigned a PARK prefix,
whereas another two, PDGFRB and XPR1, can include
parkinsonian features but are insufficiently prominent
to warrant a PARK prefix.

Genetically Determined Dystonia

We identified 21 new genes that warrant classification
as causing dystonia (DYT). These genes have been orga-
nized into isolated dystonia, combined dystonia, and
complex dystonia in accordance with the most recent
guidelines® (Table 2). Within the complex dystonias, we
highlight those genes associated with dystonia-deafness
and dystonia with developmental delay since these com-
binations may be helpful genotype—phenotype relation-
ships to consider when evaluating patients from a

diagnostic standpoint. The frequent association of dys-
tonia and neurodevelopmental disorders reflects the role
of several of these genes in central nervous system devel-
opment, and it is debatable whether to assign a DYT
prefix (highlighting dystonia as a prominent feature) in
the context of a neurodevelopmental disorder with
developmental delay and/or intellectual disability. We
suggest a DYT classification for three forms where dys-
tonia is a predominant sign (IRF2BPL, VAC14, and
FOXG1; Table 2). There are several genetic conditions
where less prominent dystonia can be encountered in
the setting of a predominant developmental disorder or
epileptic encephalopathy. This combination can be diag-
nostically helpful, and we have designated these forms
as “Neurodevelopmental disorder with dystonia”
(Table S3A).

Finally, six additional genes have been reported in the
literature as potential dystonia genes, namely TOMM?70,
COL6A3, NR4A2, POLR1C, NUBPL, and DEGSI;
however, they currently lack independent confirmation
and are therefore not (yet) included in our updated list
of genetically determined dystonia (Table S3B).

Genetically Determined Ataxia

The ataxias are a clinically and genetically heteroge-
neous group of movement disorders. They can present
as pure cerebellar ataxias with ataxia as the only or
predominant feature or can be accompanied by variable
additional signs and symptoms. We identified a total of
38 new genes known to cause monogenic ataxia and
therefore assigned an ATX prefix. We categorized them

TABLE 7 Recently identified or confirmed forms of paroxysmal movement disorders

Less common

movement
Designation phenotype Clinical clues OMIM MOI
Predominant dyskinesia
PxMD-KCNMA 17904 Paroxysmal non-kinesigenic dyskinesia including dystonic and 609446 AD
choreiform movements of mouth, tongue and extremities.
Triggered by alcohol, fatigue, or stress, although no clear trigger in
some individuals. Developmental delay, generalized epilepsy
Predominant dystonia
PxMD-ECHS1'72%5-3%8 Ataxia, spasticity ~Leigh syndrome; onset before age 10 years, paroxysmal dystonia 616277 AR
triggered by high metabolic demand (exercise, fever, low calorie
intake), developmental delay, acute episodes of encephalopathy,
increased plasma lactate, and urinary excretion of organic acids
Disorders that usually present with other phenotypes but can have predominant paroxysmal dyskinesias
MY C/PxMD-SCN8A**"  Ataxia Paroxysmal kinesigenic dyskinesia, seizure disorder (wide spectrum 617080 AD

with benign infantile seizures in some and epileptic encephalopathy
in others), intellectual disability

OMIM, Online Mendelian Inheritance in Man (https://www.omim.org/about); MOI, mode of inheritance; AD, autosomal dominant; AR, autosomal recessive.
“Mutations in this gene can also cause familial myoclonus type 2 (OMIM 618364; Table 5), autosomal dominant cognitive impairment with or without cerebellar ataxia (OMIM
614306), and/or autosomal dominant developmental and epileptic encephalopathy 13 (DEE13, OMIM 614558).
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TABLE 8  Confirmed forms of mixed movement disorders

Designation

Clinical clues OMIM

MOI

MxMD-ADCY5>!"

MxMD-ATP13A2*

MxMD-MYOR G-(PFBC)***%%7

MxMD-OPA37%%

Pleiotropic dyskinesia (choreatic, myoclonic, 600293
dystonic) mainly involving the limbs, neck, and/or
face, paroxysmal worsening triggered by anxiety or
drowsiness, axial hypotonia, developmental delay,
abnormal saccades, spasticity

Broad and variable clinical spectrum including several 606695 (PARK), 617225 (HSP)

movement disorders: (1) Kufor-Rakeb
syndrome”'''%: juvenile-onset atypical dystonia-
parkinsonism, supranuclear gaze palsy, pyramidal
signs, dementia, dysphagia, dysarthria and olfactory
dysfunction; (2) HSP*'**": adult-onset,
characterized by spasticity, lower limb weakness,
cognitive impairment, psychiatric symptoms,
axonal neuropathy, thin corpus callosum and “ears
of the lynx” sign on MRUI; (3) adult-onset

318-320

progressive ataxia and action

318-323
myoclonus

Dysarthria, cognitive deficits, and depression, 618317
headaches and psychosis in a lower percentage,
imaging abnormalities include basal ganglia and
cerebellum calcification

3-Methylglutaconic aciduria type 3 (MGCA3; many 258501
alternative names); neuro-ophthalmological
syndrome with early-onset bilateral optic atrophy
with progressive decrease in visual acuity and
horizontal nystagmus, choreoathetoid movements
before age 10 years, which can restrict ambulation,

AR

AR

AR

spastic paraparesis in second decade, pyramidal

dysfunction, ataxia, and variable cognitive

impairment

MxMD-PDGFB-(PFBC)>**3%

Parkinsonism, ataxia, or chorea with possible 615483 AD

additional headache and cognitive deficits, imaging

abnormalities include thalamus, cerebellum, white
matter, and basal ganglia calcifications

MxMD-POLG30-338

Multiple syndromes often with progressive external 174763

AD or AR

ophthalmoparesis and variable other neurological

manifestations; rarely prominent parkinsonism

OMIM, Online Mendelian Inheritance in Man (https://www.omim.org/about); MOI, mode of inheritance; MxMD, mixed movement disorders; AD, autosomal dominant;

HSP, hereditary spastic paraplegia; MRI, magnetic resonance imaging; AR, autosomal recessive; PEBC, primary familial brain calcifications.

; o o o 32
*Mutations in this gene also cause neuronal ceroid lipofuscinosis (CLN12).*%!

based on their mode of inheritance: 11 genes are
inherited in an autosomal dominant manner, 18 are
inherited in an autosomal recessive fashion, and one
each shows mitochondrial and X-linked inheritance.
Further, another gene that was already known to cause
autosomal recessive ataxia (ATX-STUBI1, also known
as SCAR16) and had therefore already been assigned a
prefix,* has now also been confirmed as a dominant
ataxia gene (also known as SCA48). Lastly, in ATX-
MSTO1 also both autosomal dominant and recessive
inheritance have been reported. The variable pheno-
typic spectrum of the listed genes is highlighted in
Table 3. For five genes, a double prefix was assigned.

In addition to these confirmed genes, 95 genes have
been reported as potential novel ataxia genes or genes
causing a phenotype that can include ataxia. These
await further confirmation (Table S4).

Genetically Determined Chorea

We expand our list of genetically determined chorea by
adding five genes. Notably, four of these are related to
combined phenotypes, specifically DYT and ATX
(Table 4). One salient aspect of our literature review is
the combination of chorea and developmental delay.
Indeed, several entities characterized by motor, language,
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global delay, or epileptic encephalopathy are also associ-
ated with chorea, albeit in some cases in a less prominent
manner. This is similar to our findings for dystonia genes
and highlights the evolving spectrum of epilepsy—
dyskinesia syndromes."® Table SSA lists genes linked to a
neurodevelopmental disorder that can have chorea as
part of their phenotype. Finally, three genes have been
reported in the literature as potential chorea genes,
PDE2A, GRIA3, and MRPL24; however, they lack inde-
pendent confirmation (Table S5).

Genetically Determined Myoclonus

Myoclonus is a hyperkinetic movement disorder that
is characterized by sudden, brief, involuntary jerks of
single or multiple muscles.>'® In addition, there are
genetic myoclonic epilepsy syndromes, specifically the
progressive myoclonus epilepsies and epileptic encepha-
lopathies, where myoclonic jerks co-occur with epi-
lepsy. There are many genetic disorders that include
myoclonus but not as the only or most prominent
feature.

Our literature review led us to assign a MYC-prefix
to seven additional genes (Table 5), DHDDS, GRIA3,
MEFSDS8, SEMA6B, SCNS8A, and NUSI, three of
which (SCN8A, KCTD17, and NUS1) have been
assigned a combined prefix since paroxysmal move-
ments, dystonia, and ataxia frequently coexist with
myoclonus in these disorders. Notably, all these genes
can cause a broad clinical phenotypic spectrum.
Table 5 includes a list of genetic disorders that more
commonly present with other phenotypes and do not
warrant a MYC-prefix. A list of all genes which we
identified for which myoclonus has been repeatedly
reported, but neither as the prominent feature in the
majority nor as the sole feature even in the minority
of patients, can be found in the Supplementary mate-
rial (Table S6A). Finally, another five genes have been
reported in the literature as potential newly identified
myoclonus genes, namely BOLA3, HCN4, KCNN2,
MT-TN, and NUP214; however, they lack indepen-
dent confirmation (Table S6B).

Hereditary Spastic Paraplegia (HSP)

The hereditary spastic paraplegias (HSP) can present
as pure or complicated/complex forms with variable
additional associated features such as cerebellar signs,
neuropathy, cognitive impairment, seizures, optic nerve
atrophy, or ophthalmoplegia. Our literature review
resulted in the addition of 13 newly confirmed HSP
genes (Table 6). Two of them (CPT1C and UBAP1) are
inherited in an autosomal dominant fashion and pre-
sent as pure forms, whereas the others, except for one
X-linked gene (SLC16A2), are inherited in an autoso-
mal recessive fashion and present with a complex
phenotype (ENTPD1, HPDL, MAG, PCYT2, and

RNF170). One form, ALDH18A1, has both autosomal
dominant and autosomal recessive inheritance. Further,
four genes have been assigned a combined prefix, all of
which can cause a broad and variable phenotypic
spectrum including two predominant movement disor-
der phenotypes each; specifically ataxia and spastic
paraplegia in HSP/ATX-CAPN1, HSP/ATX-UCHLI,
ATX/HSP-KCNA2, and ATX/HSP-VPS13D. Addition-
ally, another 20 genes have been reported in the litera-
ture as potential HSP genes; however, they lack
independent confirmation and are therefore not (yet)
included in our updated list. The list of unconfirmed

candidate genes can be found in the Supplementary
material (Table S7).

Genetically Determined Paroxysmal Movement
Disorders

In our 2016 review, we introduced the category of
Paroxysmal Movement Disorders (PxMD) which
describes cases where movement disorders occur in an
episodic manner. These disorders often include a mixed
and overlapping phenomenology. Table 7 shows the
proposed list of additional genetic paroxysmal move-
ment disorders. We have conferred a PxMD prefix to
the KCNMAT1 gene which causes dystonic and chorei-
form movements. In some individuals, episodes happen
without a clear trigger. We also included the ECHS1
gene that has been reported to cause episodic dystonia
triggered by fever, stress, and physical activity.'” Addi-
tionally, for SCN8A a double prefix has been assigned
as mutations in this gene can either cause paroxysmal
movements within a broad phenotypic spectrum of sei-
zure disorders or familial myoclonus (Tables 5 and 7).

Genetically Determined Neurodegeneration
with Brain Iron Accumulation (NBIA) and
Primary Familial Brain Calcification (PFBC)

As stated above, we decided to reclassify genes that
have previously been assigned a NBIA or PFBC prefix
according to their most prominent movement disorder
phenotype. Two of these genes, XPR1 and PDGFRB,
have lost their preceding prefix since the current evi-
dence shows a movement disorder is present in a
minority of individuals only. For both genes, however,
parkinsonism has been described as a prominent feature
in a subset of patients (see Table 1). Table S8 shows a
complete list of all reclassified entities and summarizes
all genes with a PBFC and NBIA suffix, respectively.

Genetically Determined Mixed Movement
Disorders
Some genes display a mixed and overlapping phe-

nomenology, without a clear predominance of a specific
movement disorder. Given this, we propose a new
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category of Mixed Movement Disorders (MxMD). This
list includes ATP13A2, OPA3, as well as POLG, and
further also PDGFB and MYORG, both of which were
in the previously existing category of primary familial
brain calcification. Finally, ADCYS was moved to this
category; it was previously listed with three prefixes
(CHOR/DYT/PxMD-ADCYS;  https://www.movement
disorders.org/MDS/About/Committees--Other-Groups/MDS-
Task-Forces/Task-Force-on-Nomenclature-in-Movement-
Disorders.htm).

Discussion

We here provide updated lists of hereditary move-
ment disorders following the established procedure of
the MDS Task Force for the Nomenclature of Genetic
Movement Disorders. Our update covers the past
5 years and we have identified 89 new genes that war-
rant a movement disorder-related prefix. We believe
that this is a helpful resource for clinicians and
researchers, and we encourage the field to continue to
adopt and use this nomenclature system. Along these
lines, this project remains a moving target with need for
continuous updates. We expect that many additional
disease-causing genes will be identified and will need to
be evaluated. We also expect that genes already
assigned a prefix will need to be reassessed and may be
reclassified over time. We will strive to continue to
expand and improve our recommendations as the Task
Force continues its assigned mandate, and yearly updates
will be made available on the MDS Task Force website
(https://www.movementdisorders.org/MDS/About/
Committees—Other-Groups/MDS-Task-Forces/Task-
Force-on-Nomenclature-in-Movement-Disorders.htm).

Challenges and Limitations

One of the main challenges we encountered when
preparing these updated lists was determining the pre-
dominant phenotype in a given condition. This becomes
especially challenging in very complex genetic syn-
dromes and disorders with a broad phenotypic spec-
trum, for example, neurodevelopmental disorders or in
the case of pronounced phenotypic variability (chame-
leon-like gene-disease relationships). From a clinical
perspective, one might argue that genes should only be
included if the respective movement disorder is the most
prominent phenotype. Otherwise, the lists might get too
extensive and then fail to usefully highlight any particu-
lar disorder. However, from a genetics perspective, it
might make sense to include all genes that may present
with a movement disorder in broader genetic testing
efforts, even if it is not the predominant phenotype or if
it is just in the minority of cases. This would ensure that
physicians are aware of the phenotypic spectrum of a
mutated gene and would be of more practical use to

physicians seeing patients first presenting with move-
ment disorders independent of whether this is a com-
mon or rare manifestation of the disorder. Recognizing
the advantages of both approaches, we provide both a
concise list that highlights those disorders where move-
ment disorders predominate and a more comprehensive
list of genes that usually present with other phenotypes
or are even confirmed genes for a different disease
entity, but where a movement disorder has been
described. To distinguish the two, the latter genes were
not assigned a prefix. We acknowledge that some of
these “less predominant” cases may be the ones that are
referred to a movement disorders specialist. Nonethe-
less, we believe that including them as part of the Sup-
plementary material still provides a useful resource for
the clinician. In this current update, we started by
highlighting conditions that predominantly present as a
neurodevelopmental disorder but can also have domi-
nant dystonia and chorea. For future updates, it might
be useful to apply this categorization also to other
movement disorders, for example, ataxia and HSP.
Additionally, in the future, we may consider assigning a
special prefix to these genes. For example, to distin-
guish phenotypic presentations occurring in more than
50% and less than 50% of cases, one option under
consideration is to retain the uppercase phenotype des-
ignation (eg, PARK, DYT, ATX, etc.) followed by the
gene name for the former situation (as in the current
classification) and to use a lowercase symbolization (eg,
park, dyt, atx) for the latter.

Further, especially for newly identified genes, the ini-
tial publications often include patients with a broad
phenotype and only over time, the “pure movement dis-
order phenotypes” or “core phenotypes” become appar-
ent. In some cases, initial publications may report a
pure movement disorder phenotype, and only over time
and additional cases recurrent additional features may
be identified. Finally, even with considerable further
experience, for some genetic disorders it may remain
impossible to define only a single (core) phenotype if
great heterogeneity remains present.

Another challenge that arose in the preparation of
this update was the evaluation of pathogenicity and
what to consider to be convincing evidence for a causal
gene—disease association. Our evaluation of pathogenic-
ity was based on numerous criteria, the most important
of which was an independent confirmation of a causal
role of a gene in multiple unrelated patients or families
and, in addition, the lack of evidence that refutes a
causal gene—disease relationship. In general, this
approach works well for rare diseases, which comprise
the majority of genetic movement disorders described
here. A particular challenge, however, was the evalua-
tion of newly identified genes causing parkinsonism. PD
is a common neurodegenerative disease. Thus, even two
independent groups reporting variants in the same gene
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in single(ton) cases with typical PD and absence of spe-
cific additional features would not necessarily constitute
enough evidence to be convincing as a monogenic cause
of PD. Evidence of segregation in extended families and
gene-specific functional studies on the other hand can
help to support a causal relationship.

To overcome this obstacle, we employed standard-
ized, previously published criteria.® These criteria
served as presumably objective guidance in the interpre-
tation of evidence for a gene—disease association based
on currently available data; however, there remained
room for subjective interpretation. Of note, these
criteria set a high threshold, especially regarding the
number of reported mutation carriers, to confirm a
causal relationship. Given this, our list of unconfirmed
genes (Table S2) serves as an important adjunct
resource. Several genes already designated as PARK by
the previous ad hoc locus system, for example,
UCHL1, GIGYF2, HTRA2, EIF4G1, and DNAJC13
(termed as PARKS, PARK11, PARK13, PARK18, and
PARK21, respectively), could not be confirmed. Of
note, these genes are already being widely and mostly
controversially discussed in the literature.' !> After the
initial nomination of these genes as “novel PD genes”,
additional studies failed to confirm a causative role and
pointed out that the existing evidence was conflicting
(for details see Table S2). It has even been suggested to
remove the PARK designation for these genes.'® This
experience reinforces the importance of standard
criteria for inclusion in the PARK list. Based on these
criteria, CHCHD2 and VPS13C (also known as
PARK22 and PARK23, respectively) are now listed as
confirmed causes of monogenic parkinsonism due to
several reported patients, often with clearly truncating
variants, especially in VPS13C (see Table 1).

With the support of the Parkinson’s Foundation in the
US, a PD Gene Curation Expert Panel (GCEP) compris-
ing experts in clinical and molecular genetics of PD has
been officially convened as a ClinGen Clinical Domain
Working Group (https://clinicalgenome.org/affiliation/
40079/). The PD GCEP has already begun to curate the
well-established PD genes such as LRRK2 and VPS35
using the ClinGen framework and will additionally eval-
uate genes with a lower confidence of gene-disease asso-
ciation. As the work of the PD GCEP continues and
more data become available in the literature, we will
evaluate any potential discrepancies within the PD GCEP
with our determinations and address them collabora-
tively before including them on the Task Force’s home-
page. Indeed, several of our Task Force members are
also members of the PD GCEP, which will facilitate this
dialogue. With respect to other movement disorders with
a particular focus on rare movement disorders, the utility
and feasibility of using the ClinGen framework still need
to be determined. If deemed helpful, we may seek to
establish new GCEPs for these conditions.

What’s Next?

We expect that the list of newly identified genes linked to
a movement disorder phenotype will continue to expand
and simultaneously hopefully also our understanding of
gene—disease associations. Therefore, it remains important to
re-evaluate the literature periodically and update the lists of
(confirmed) monogenic causes of movement disorders. These
updated lists will then be published on the MDS Task Force
website  (https://www.movementdisorders.org/MDS/About/
Committees—Other-Groups/MDS-Task-Forces/Task-Force-
on-Nomenclature-in-Movement-Disorders.htm). To make
this easier, we have already started to prepare lists of yet
unconfirmed candidate genes for the future.

To further define the phenotypic spectrum and
genotype—phenotype correlations of these movement disor-
der genes, the Movement Disorder Society Genetic Muta-
tion Database (MDSGene; https://www.mdsgene.org)
provides the infrastructure for a systematic collection,
curation, and descriptive analysis of phenotypic and geno-
typic data. Each of these newly defined movement disorders
genes are candidates for inclusion in MDSGene and can
provide new insights into the phenotype through the com-
prehensive individual-level nature of the data collection.
We aim to expand the number of included genes in the
MDSGene database and will start this effort by prioritizing
novel monogenic causes of parkinsonism and dystonia.@
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