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Noninvasive and reliable automated detection of
spreading depolarization in severe traumatic brain
injury using scalp EEG
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Abstract

Background Spreading depolarizations (SDs) are a biomarker and a potentially treatable

mechanism of worsening brain injury after traumatic brain injury (TBI). Noninvasive detection

of SDs could transform critical care for brain injury patients but has remained elusive. Current

methods to detect SDs are based on invasive intracranial recordings with limited spatial

coverage. In this study, we establish the feasibility of automated SD detection through

noninvasive scalp electroencephalography (EEG) for patients with severe TBI.

Methods Building on our recent WAVEFRONT algorithm, we designed an automated SD

detection method. This algorithm, with learnable parameters and improved velocity esti-

mation, extracts and tracks propagating power depressions using low-density EEG. The

dataset for testing our algorithm contains 700 total SDs in 12 severe TBI patients who

underwent decompressive hemicraniectomy (DHC), labeled using ground-truth intracranial

EEG recordings. We utilize simultaneously recorded, continuous, low-density (19 electrodes)

scalp EEG signals, to quantify the detection accuracy of WAVEFRONT in terms of true

positive rate (TPR), false positive rate (FPR), as well as the accuracy of estimating SD

frequency.

Results WAVEFRONT achieves the best average validation accuracy using Delta band EEG:

74% TPR with less than 1.5% FPR. Further, preliminary evidence suggests WAVEFRONT can

estimate how frequently SDs may occur.

Conclusions We establish the feasibility, and quantify the performance, of noninvasive SD

detection after severe TBI using an automated algorithm. The algorithm, WAVEFRONT, can

also potentially be used for diagnosis, monitoring, and tailoring treatments for worsening

brain injury. Extension of these results to patients with intact skulls requires further study.
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Plain language summary
Physical injury to the brain, for

example due to head trauma, may

worsen over time, resulting in long-

term disability or death. A spreading

depolarization is a slowly spreading

wave in the brain, which, if detected,

can be used to predict worsening

brain injuries. Current methods to

detect spreading depolarizations

require surgeries, which are risky and

unlikely to be recommended to

patients with mild brain injuries. In

this work, we develop an automated

monitoring technique for non-surgi-

cal, non-invasive detection of

spreading depolarizations, called

WAVEFRONT. We validated the

performance of WAVEFRONT in 12

patients with severe brain injury. Our

results demonstrate the feasibility of

non-invasive detection of spreading

depolarizations. Our approach can

potentially help clinicians predict

outcomes of brain injury patients, and

tailor treatments accordingly.
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This paper aims to address the question of whether spreading
depolarization (SD) waves in the brain can be detected
noninvasively. This is a long-standing question in the field

of neurocritical care, with limited and contrasting reported results
regarding the feasibility of SD detection using scalp electro-
encephalography (EEG). SDs are waves of neurochemical changes
in the brain, which propagate slowly (1–8mm/min) across the
cortical surface and suppress neural activity1–3. SDs are caused by a
breakdown in the ionic homeostasis across neuronal membranes4.
Increasing evidence shows that SDs are associated with poor
clinical outcomes in traumatic brain injuries (TBIs), strokes, and
hemorrhages4–9 and that this association is causal, such that the
neurophysiological sequelae of SDs directly worsen secondary
brain injury9–15. Recent studies have explored the potential of SD
as a therapeutic target in subarachnoid hemorrhage (SAH)9,16–18

and TBI19,20. Each year, around 69 million patients worldwide
suffer from TBI21 with 2.5 million patients in the United States22.
Recent data on five-year outcomes for patients with moderate and
severe TBI in the United States indicate that more than half of
these patients experienced neurological worsening or death23.
Therefore, detection of SD as a reliable biomarker and potential
therapeutic target may help improve clinical outcomes.

Previous attempts to detect SDs using EEG have had limited
success. In24, Hartings et al. reported amplitude depressions
associated with 81% of the intracranially detected SDs through
visual inspection of scalp EEG recordings in severe TBI patients.
In an earlier work25, Drenckhahn et al. reported similar positive
results for malignant stroke and SAH patients. In another recent
work, some SD-type patterns were observed in scalp EEG
recordings of epileptic patients26, but these were without invasive
recordings to serve as a ground truth. By contrast, in27, Hofmeijer
et al. monitored 18 stroke and 18 TBI patients using 21-electrode
EEG systems, where visual inspection did not reveal any SDs.
In27, patients did not receive craniotomy, and there was no
invasive recording. Therefore, it is not clear which patients had
SDs. In a commentary paper28 on this work, Hartings et al.
provided potential reasons for the reported negative results in27,
including the lack of criteria for SD detection in scalp EEG,
spatial low-pass filtering effect of the intact skull in these patients,
and use of short one-hour time intervals for visual inspection.
Using highly compressed EEG recordings in 11-hour time
intervals, the authors in28 reported visual identification of some
SD depression patterns in a TBI patient, but without any invasive
ground truth. This work was recently followed by9, in which the
authors monitored 15 TBI and 20 aneurysmal SAH (aSAH)
patients, some of whom received craniotomy, with simultaneous
invasive and noninvasive recordings. No pattern of SDs was
found in continuous scalp EEG associated with invasively mon-
itored SDs. Thus, it remains uncertain whether noninvasive
detection of SDs is feasible, let alone sufficiently reliable for
clinical relevance.

In addition, the feasibility of noninvasive SD detection has
been explored using simulations29–31. While SDs are propagating
depressions, in a related work on real data, we demonstrated the
feasibility of localizing non-spreading depressions of activity (i.e.,
neural silences) in the brain using EEG recordings32,33—what we
call Silence Localization. The insights obtained from Silence
Localization32,33 do not only suggest the possibility of detecting
SDs using EEG, but also inform our approach in this work.

In this work, we explore the feasibility and quantify the per-
formance of noninvasive SD detection in severe TBI patients
using an automated algorithm applied to real data. We used our
previous algorithm, WAVEFRONT30, with appropriate mod-
ifications and improvements, for automated noninvasive detec-
tion of SD events in a group of 12 severe TBI patients who
underwent decompressive hemicraniectomy (DHC) surgery,

followed by continuous monitoring in ICUs through simulta-
neous scalp EEG (a low-density EEG system with 19 electrodes at
10–20 standard locations) and intracranial ECoG recordings. A
natural question is whether noninvasive and automated SD
detection in patients with removed skull parts is clinically rele-
vant? The DHC procedure is part of the standard of care for
many severe TBI patients34 to control elevated intracranial
pressure, extract hematoma, and prevent further damage to the
brain tissue35–37. It is worth noting that following a DHC,
the scalp is sutured back over the brain, even though a piece of
the skull is missing. Patients who receive DHC are continuously
monitored in the ICU after their scalp incision is closed. During
this period, while intracranial monitoring of SDs can provide
higher spatial resolution8, scalp EEG-based automated SD
detection can provide valuable clinical information pertaining to
worsening brain injury. Scalp EEG has broader spatial coverage
than a locally placed ECoG strip. It also provides better spatial
resolution in DHC patients compared to the intact skull EEG
recordings35, at least close to locations where the skull has been
removed. Further, while procedural risks (e.g., bleeding, infection,
etc.) associated with subdural electrodes are infrequent38,39,
noninvasive EEG precludes their possibility entirely. Therefore,
noninvasive SD detection in severe TBI patients with DHC can
prove clinically valuable in improving outcomes.

In Results, we show that WAVEFRONT achieved a reliable SD
detection performance using Delta band EEG recording, with a
~ 74% average true positive rate (TPR) and less than 1.5% false
positive rate (FPR) using cross-validation. Such a high TPR
attained with a low FPR resolves the feasibility question: non-
invasive SD detection is possible, at least for patients who have
received DHC. However, is this performance sufficient for clinical
goals? To answer this question, we performed an additional
analysis, predicting the number of SDs from the total minutes of
detected SD events. This analysis was inspired by Jewell et al.’s10

estimation of SDs’ frequency; unlike in our study, their aim was to
automate invasive detection of SDs. Our preliminary results,
albeit with limited data, suggest that WAVEFRONT can reliably
estimate the number of SD occurrences in long 30-hour time
intervals using a regression analysis. Overall, we believe that
WAVEFRONT’s performance indicates that noninvasive prog-
nostication of worsening brain injury using SD detection is
possible. However, to understand this potential, further studies
with more data are warranted.

Methods
In this section, we first describe the dataset used in our study,
which included a group of 12 patients hospitalized after severe
acute TBI who underwent DHC and cortical strip ECoG electrode
placement. We then describe the intracranial SD ground truth
labeling, and introduce our automated SD detection method,
emphasizing the explainability of WAVEFRONT by providing
intuition and visualization of the main steps.

Dataset. The dataset we used was obtained as part of a multi-
center observational clinical study that monitored SDs in TBI
patients (ClinicalTrials.gov ID: NCT00803036). Continuous EEG
signals were recorded over a few days (95 ± 42.2-hour on average)
following DHC using a DC-coupled EEG amplifier (CNS
Advanced ICU EEG Amplifier from MOBERG ICU Solutions),
with a sampling frequency of 256 Hz, from 19 electrodes placed at
10–20 standard locations.

In addition, during the DHC procedure, a strip of six
monopolar ECoG electrodes (all the ECoG and EEG electrodes
were referenced to a common electrode on scalp), with an
interelectrode distance of 1cm, was placed on the hemisphere that
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underwent the DHC, and continuous ECoG and EEG data were
recorded simultaneously using the same amplifier. The recorded
ECoG signals were visually assessed by a clinical expert (Dr. J.
Hartings) to identify and annotate the SD episodes in the dataset.
See the next section for a detailed description of SD temporal
annotations.

For EEG preprocessing and artifact removal (see Supplemen-
tary Note 1 for details), we used two additional electrophysio-
logical recordings: (i) an electrocardiogram (ECG) signal
recorded at a 500 Hz sampling frequency and (ii) a plethysmo-
gram (PLETH) signal at a 125Hz sampling frequency. These
signals were recorded using the IntelliVue Bedside (PHILIPS)
patient monitor.

Participants. Data from 12 (nine male and three female) severe
TBI patients were utilized in our study. Two patients had DHC
in the left hemisphere, and the remaining 10 patients had DHC
in the right hemisphere. Eleven patients experienced subdural
hematoma (SDH), and one patient had an epidural hematoma
(EDH). Detailed information about these patients is included in
Table 1. All procedures were approved by the University of
Cincinnati Institutional Review Board (Protocol ID 2016-8153).
A legally authorized representative for each patient provided
surrogate consent for participation in the initial research study.
For visualization, computed tomography (CT) scans of a TBI
patient (patient 6, see Table 1) with right DHC are shown in
Fig. 1, where the locations of DHC and evacuation of hematoma
can be seen as asymmetric dark regions in the skull’s
thick white layer (marked with green arrows), along with the
scalp layer on the DHC site (marked with orange arrows). In
addition, the location of the subdural strip is shown (Fig. 1
right).

SD event temporal annotation based on ECoG signals. Each SD
event in these TBI patients was annotated over time by a clinical
neuroscientist (Prof. Jed A. Hartings at Department of Neuro-
surgery, University of Cincinnati), through visual assessment of
full-band ECoG signals. In this paper, an SD event refers to a
unique SD wave, as annotated by consideration of all electrodes of
the ECoG strip. Each unique SD wave was annotated at the start
of a slow near-DC negative shift (in 1–10 mHz), i.e., slow
potential change (SPC), in a chosen ECoG electrode, which is not
always the same, even for the same patient. The temporal
annotation of an SD event through visual inspection of the ECoG
signals may not accurately reflect the actual onset of each SD
wave. The reported performance metrics in this study (e.g., TPR
and FPR) depended on the temporal annotations of SDs (see
Results). Four different types of SD events were annotated: (i)
CSD: an event during which there was a cortical spreading
depression (CSD) in each electrode that had an SPC, where CSD
was a manifestation of spreading depolarization and was defined
as a cortical wave of depression in the high-frequency (> 0.5 Hz)
ECoG (HF-ECoG) signals40; (ii) ISD: an event where the HF-
ECoG signals at all the participating electrodes with SPC were
already flat—these are called isoelectric spreading depolarizations
(ISDs)8; (iii) CSD/ISD: an event where some ECoG electrodes
experienced CSD-like propagation, while other electrodes had
ISDs; and (iv) scCSD: an event which was identified as a clear SD
in the signal of a single electrode. Although it appeared only on a
single electrode, it met the consensus criteria, defined by Co-
Operative Studies on Brain Injury Depolarizations (COSBID)8, to
be classified as an SD. According to COSBID, a minimal criterion
to score an event as SD is “an event which has a characteristic DC
shift associated with spreading depression of spontaneous activity
even if DC shift and spreading depression are restricted to a single T
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channel.” The total number of annotated SD events for each
patient in the dataset is included in Table 1.

In this study, the ground truth SDs were annotated based on a
single ECoG strip located in the DHC hemisphere (e.g., see
Fig. 1), with no invasive measurements in the contralateral
hemisphere (i.e., the hemisphere with an intact skull). We
observed that the scalp EEG signals from the contralateral
hemisphere and ipsilateral hemispheres were significantly differ-
ent due to the missing part of the skull in the ipsilateral
hemisphere (e.g., ipsilateral EEG signals had higher average
power, see Fig. 2b and Supplementary Note 1 and Supplementary
Fig. 1 for hemispheric comparison of average baseline power on
the scalp, p < 1e− 8). The enhancement of EEG signals due to the
defects in the skull is consistent with observations of “breach
rhythm” reported in the literature, which is an increase in signal
power in a wide range of frequencies in areas with skull
defects41,42. In this paper, we only used ipsilateral scalp EEG
electrodes in each patient for SD-related inferences. Excluding the
contralateral electrodes is helpful to (i) tailor the WAVEFRONT
algorithm to the SD events that we are certain about (i.e., events

that we have a ground truth for) during the training process and
obtain a more realistic estimation of WAVEFRONT’s perfor-
mance in noninvasive detection of SDs, and (ii) acknowledge the
statistical differences between the ipsilateral and contralateral
EEG signals, as ignoring these differences may adversely affect the
performance of WAVEFRONT. Because EEG signals tend to be
less sensitive to contralateral sources, we expect this restriction to
not hurt the performance of our algorithm. Finally, electrodes on
the midline (Fz, Cz, and Pz) were included in our analysis, as they
are sensitive to signals on either side. Figure 2a shows the selected
subset of EEG electrodes (11 out of 19 electrodes) for a patient
with a right hemisphere DHC.

EEG preprocessing pipeline. We used a multi-step preprocessing
pipeline, described below, to prune the continuous EEG record-
ings and reject ICU-related artifacts and segments of EEG signals
with poor quality electrode-scalp contacts:

Band-pass filtering and downsampling. We preprocessed the EEG
data using the EEGLAB toolbox43 in MATLAB. To be able to

Fig. 1 CT scan of a severe TBI patient with right DHC. Transverse (a) and right side (b) view of computed tomography (CT) scans of a severe traumatic
brain injury (TBI) patient (patient 6, see Table 1) with right decompressive hemicraniectomy (DHC). The missing portion of the skull (marked with green
arrows), the scalp layer on the DHC site (marked with orange arrows), and the strip of six electrocorticography (ECoG) electrodes are also marked. The
facial region is stripped away to ensure the anonymity of the patient.

Fig. 2 EEG baseline power in a patient with right DHC. Electroencephalography (EEG) baseline power in ipsilateral (with missing skull) and contralateral
(with intact skull) hemispheres in a patient (patient 4, see Table 1 for details) with right decompressive hemicraniectomy (DHC): a 11 ipsilateral EEG
electrodes are marked with red dashed line, and eight contralateral electrodes are marked with blue dashed line and b 3 h of the EEG recording across
ipsilateral (red traces) and contralateral (blue traces) electrodes. Most of the ipsilateral electrodes on top of the DHC region (with missing skull) had
higher EEG baseline power (e.g., Fp2, F8, F4, T8, C4, and P8), in comparison with the contralateral electrodes on the regions with intact skull. The EEG
signals were band-pass filtered in [0.5, 30] Hz and preprocessed (before amplitude outlier removal, see Supplementary Note 1 for more information). The
signal at Cz had poor quality and was removed through the preprocessing steps.
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evaluate the performance of our SD detection algorithm in dif-
ferent frequency bands, we bandpass filtered the EEG signals in
different frequency ranges, namely, [0.001, 0.01]Hz (near-DC),
[0.5, 4]Hz (Delta), [4, 8]Hz (Theta), [8, 12]Hz (Alpha), and [12,
30]Hz (Beta) using a Hamming-windowed sinc finite impulse
response (FIR) filter. The filter order was 1000 with a transition
bandwidth of ~ 0.02 Hz. An upper cutoff frequency of 30 Hz was
used to remove high-frequency noise components. The filtered
EEG signals were then downsampled to 64 Hz. We also bandpass
filtered the ECG and PLETH signals in the frequency range of
[0.5, 30]Hz and downsampled them to 64 Hz.

Masking out poor-quality segments of EEG signal. There are seg-
ments of the EEG recordings with poor quality electrode-scalp
contacts which could be due to movements of patient on the bed,
and conductive gel/saline drying out at each electrode, etc. CNS
Advanced ICU EEG Amplifier monitors the quality of each
electrode-scalp contact through continuous impedance recording
at a sampling frequency of 1Hz. To enable our algorithm to detect
SDs even when a few of the electrodes do not have good contact,
we used these impedance recordings to implement masks for
automated removal of the parts of EEG signals with poor quality
EEG. We upsampled the continuous recording of impedance at
each EEG electrode to match the sampling frequency of the EEG
signals. For each electrode, the median of impedance over the
whole recording was calculated (Mch

Imp) and parts of the EEG

signals with abnormally high (>2Mch
Imp) impedance were used for

masking. Instead of cutting these parts out of the EEG signals, we
assigned dummy zero values to these parts (i.e., we mask out
these parts) to maintain the continuity of the recordings. As it is
explained in “Methods: SD detection and tracking using
WAVEFRONT”, these masked-out sections were excluded from
the power envelope extraction and the downstream analyses to
prevent false alarms resulting from these zero values. This helps
us to keep the parts of the dataset where a few of the electrodes
have good recording quality. In “Methods: SD detection and
tracking using WAVEFRONT”, we discuss in detail how we
detected SDs when the recordings of some EEG electrodes were
not available/usable. For the time intervals during which the
signals of all EEG electrodes were masked out, dummy zero
values are assigned to the PLETH and ECG signals as well for
performing independent component analysis, discussed next.

Artifact classification and removal using independent component
analysis (ICA). We grouped together the ECG, PLETH, and EEG
signals and performed an ICA to extract and remove sources of
artifact (such as eye blinks, eye movements, heartbeats, and
muscle artifacts) in EEG signals. We used the EEGLAB43 toolbox
to calculate the independent components and used an automated
EEG independent component classifier plugin (ICLabel) in
EEGLAB to guide our decision on which components belong to
sources of artifacts and subsequently removed them from the
EEG recordings.

Outlier removal. Extracted ICA components may not perfectly
separate some artifacts with abnormally high amplitudes (i.e.,
outliers) from the EEG signals. Therefore, as the last step in the
preprocessing pipeline, we detected and removed the amplitude
outliers using Tukey’s fences method44,45. Tukey defines the
outliers as data points that fall outside an interquartile range of
[Q1− k(Q3−Q1), Q3+ k(Q3−Q1)], where Q1 and Q3 are the
first and third quartiles respectively, and k is an outlier threshold.
We used k= 3, which detects far out data points according to
Tukey’s outlier definition. For each electrode, we detected and
masked out (following the same procedure as impedance-based

masking discussed earlier in this section) parts of the EEG signals
with outlier amplitude. Supplementary Fig. 2 illustrates the pre-
processing steps applied on the ipsilateral EEG signals of a patient
with right DHC, in a 4-hour time window. Supplementary Fig. 2a
shows the full-band EEG signals, with poor quality (high impe-
dance) in the first ~ 77 min of the recording, which is masked out
in the band-pass filtered signals (in Delta band, see Supplemen-
tary Fig. 2b). The artifacts and outliers are detected and removed
as it is shown in Supplementary Fig. 2c. The preprocessed con-
tinuous EEG signals were then used for SD detection using
WAVEFRONT.

SD detection and tracking using WAVEFRONT. We used our
previously proposed WAVEFRONT SD detection algorithm30,
with appropriate modifications and improvements, to detect and
track SD waves in EEG recordings of 12 TBI patients in the
dataset (see Table 1 for more details on these patients). WAVE-
FRONT is an explainable automated SD detection framework
with intuitive steps and interpretable detection outputs and
results. It addresses the challenges of noninvasive detection of SD
waves in EEG (see Discussion for details) by breaking down the
challenging task of detecting the whole propagating SD wave in
the brain using noisy and blurry filtered scalp EEG signals into
simpler tasks of detection and classification of disjoint SD
wavefronts, following these steps: Power envelopes of the scalp
EEG signals at each electrode are extracted, and depressions
(power reductions) are detected. These detected depressions are
then projected onto a 2D plane to obtain depression wavefronts.
Propagating SD wavefronts are then detected and tracked based
on their speed and direction of propagation. To estimate the
speed and direction of propagation of depression wavefronts on
these 2D planes, WAVEFRONT uses a computer vision techni-
que called optical flow46,47. It then stitches together the detection
of these wavefronts over time and space to detect and track SD
waves in the brain. This overcomes the challenge related to the
effects of sulci and gyri and enables the detection and tracking of
complex patterns of propagation.

Although the simulation results of automated SD detection in
ref. 30 are promising, we recognize that WAVEFRONT suffers
from certain technical shortcomings and cannot be directly
applied to real scalp EEG signals for SD detection: (i) it uses a
fixed set of parameters (e.g., depression level/depth threshold,
temporal score threshold, and spatiotemporal neighborhood
radius); (ii) it is highly sensitive to the amplitude outliers; (iii)
it implicitly assumes the power level of normal background brain
activity (DC offset of the power envelope) is stable and not
changing over time (see Figs. 9 and 10 in ref. 30 for more details),
which limits the ability of WAVEFRONT in the detection of
depressions, as well as near-DC shifts during propagating SDs in
the real EEG recordings; (iv) it does not address the challenges of
using a low-density EEG grid, including the high rate of false
alarms due to the non-propagating depressions on the scalp that
we observe here; (v) it does not address the challenges of using a
very low-density EEG grid, including the high rate of false alarms
due to the non-propagating depressions on the scalp; and (vi) it
estimates the optical flows in pixels on the 2D images, rather than
in terms of the physical distances on the scalp, which can
introduce errors in estimation of the speed and direction of
propagation of SD wavefronts.

In this work, we addressed these limitations of WAVEFRONT
by making necessary modifications and improvements, including
designing a training and validation framework for the algorithm
to learn an optimal set of parameters through a cross-validation
analysis. Other modifications include (a) designing a rigorous and
automated preprocessing pipeline for outlier rejection and
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pruning the EEG signals, (b) using a power-envelope extraction
method that is less sensitive to large-amplitude artifacts (i.e.,
outliers), (c) extending the depression extraction method to be
able to detect DC shifts in the near-DC components (1–10 mHz)
as well as the power depressions in the higher frequency bands
(≥ 0.5 Hz), (d) defining an effective propagation measure along
with a learnable threshold on this measure to reject the false
alarms of the non-propagating depressions on the scalp, and (e)
mapping the estimated optical flows on the scalp spherical
surface. Following are the steps of the WAVEFRONT algorithm,
along with the details on the modifications and improvements we
make in each step (see Fig. 3):

Epoching and envelope extraction. We extracted epochs from the
preprocessed EEG signals using overlapping time windows of
240 min with a step size of 180 min. For each epoch, the EEG
signal at each electrode (SEEG) was normalized by its estimated
standard deviation. As discussed in Methods, we only used ipsi-
lateral scalp EEG electrodes for each patient because of the
missing spatial SD ground truth in the contralateral hemisphere,
and heterogeneity of the baseline EEG power between the
hemispheres with DHC and the hemisphere with an intact skull.
Based on the results, for all of the 12 patients in the dataset, there
is a statistical difference (p < 1e− 8) between the ipsilateral and
contralateral average power (see Supplementary Note 1 for
hemispheric comparison of average baseline power on the scalp).
However, even in the hemisphere with DHC, the scalp electrodes
which are far from the site of surgery have overall lower baseline
power, in comparison to the electrodes which are placed right on
top of the regions with a missing skull (see Fig. 2b as an example,
where P4, O2, and Pz have smaller baseline power in comparison
with the rest of ipsilateral electrodes shown in red). This epoching
and power normalization step addresses the heterogeneity of the
baseline EEG power across electrodes and over time and helps to
detect and extract the depressions in electrodes with low baseline

power, which are otherwise missed in the interpolation and
thresholding step (this step is explained later in this section). In
addition to the baseline power normalization, this epoching helps
in the parallelization of the downstream data analysis and the
training process explained in Results.

Following the normalization step, the amplitude values were
squared, and upper root-mean-square (RMS) envelopes of the
power signals were extracted using a sliding time window of
5 min. We used the implementation of the RMS envelope
extraction method in ref. 48. There might be some small and
isolated valid portions of the EEG signals at each electrode with
the normal recording quality, which were interleaved by dummy
zero values following the masking out step in “Methods: EEG
preprocessing pipeline”. These portions were not large enough to
capture the slow depressions of SDs across EEG electrodes. To
prevent false alarms resulting from these isolated intervals, at
each epoch and before power envelope (Senv) extraction, we
masked out small intervals of the EEG signals which were less
than 20 min long, and isolated, i.e., more than 1min apart from
the nearest valid intervals. The masked-out sections of the EEG
signals were excluded from the envelope extraction.

Power depression extraction. In this step, we detected and
extracted the power depressions at each electrode based on the
power envelopes (Senv). In order to detect the falling edges of the
power envelopes, which are followed by a prolonged power
reduction, we cross-correlated Senv with a piecewise-constant
function as a first-order derivative kernel (see SPtrn kernel in
Fig. 3). This kernel extracts EEG power depressions as large
positive values in the cross-correlated signal (SXcorr). The 5min
width used for envelope extraction and depression edge detection
is small in comparison to the large temporal width of depressions
in severe TBIs. The same first-order derivative kernel was used for
the detection of DC shifts in the near-DC components ([0.001,
0.01]Hz). This kernel was directly applied on SEEG, after the

Fig. 3 Main steps of the WAVEFRONT algorithm. The power envelope of the preprocessed electroencephalography (EEG) signals (SEEG) was extracted,
and cross-correlated with a first-derivative kernel (SPtrn) to extract power depressions as large positive peaks in SXcorr, which were rectified and projected on
a 2D plane through a cylindrical projection. The resulting image (ISparse) was then spatially interpolated, thresholded, and subsampled to obtain binary
images (IBW), where the depression wavefronts were captured as white contiguous pixels. The movement of wavefronts in these binary images was
estimated using optical flows. Dominant directions of propagation (marked bins in the orientation histogram) were found through quantization of
orientations and scored based on the consistency and speed of propagation of wavefronts. Candidate frames were selected based on the calculated scores
and stitched together for the final detection output (Tout).
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epoching and power normalization step, to detect the falling
edges of SPCs in the near-DC components. Due to the low
density of EEG electrodes on the scalp (only 19 electrodes),
Laplacian spatial filtering49,50 is not effective to extract narrow
SDs30,49, and hence we did not use it in this study.

Cylindrical projection. We closely followed the steps in ref. 30 to
project the extracted SXcorr signals at ipsilateral EEG electrode
locations on a 2D plane. Before this projection, SXcorr signals were
rectified, i.e., negative values (corresponding to the rising edges in
the power envelopes) were zeroed, and positive values, which
correspond to the falling edges of the depressions, were kept
unchanged. Figure 3 shows an example of the resulting image
(ISparse) using this projection for patient 3, around an annotated
SD event. The corresponding scalp electrode locations in these 2D
plane are shown in Supplementary Fig. 3 for patients with left and
right DHC. At each time point, the median value of the SXcorr
signals at ipsilateral electrode locations was assigned to the rest of
the pixels in ISparse.

Interpolation and thresholding. We spatially interpolated ISparse
using a 2D Gaussian kernel with σ= 2.62 cm. This large standard
deviation was chosen because of the low density of EEG elec-
trodes, where the average inter-electrode distance is ~ 5.4 cm. For
interpolation at the boundaries, each ISparse image was padded
with the median of the corresponding ipsilateral values of the
SXcorr signals. The resulting smooth image (ISmooth) is shown in
Fig. 3. Following this step, we introduced a thresholding
mechanism to extract binary images from the smooth 2D images
(ISmooth): (i) we assigned zeros to the pixels at each image whose
values were ≤MISmooth

þ Thr1ðHISmooth
�MISmooth

Þ, where MISmooth

and HISmooth
are the median and the maximum of the pixel values

at each ISmooth image respectively, and Thr1 is the depression-level
threshold at each time point which were found through the
training process as a learnable parameter (see Results for details
on the training and validation steps). This step zeros the pixels
with values close to or less than the median value at each image,
and set the pixels with large positive values in ISmooth as candi-
dates for SD wavefronts, (ii) In addition, we assigned zeros to the
whole images where most of the EEG electrodes were masked out
(images with less than 5 participating scalp electrodes out of the
total 11 ipsilateral electrodes). This rejects the binary images with
poor EEG signals, (iii) we set the remaining pixels (assign 1’s),
and finally rejected (assign zeros) the images where more than
half of the pixels are set. This was done with the reasonable
assumption that SD depressions cannot spatially expand over
more than half of the cortical surface. Following this three-stage
thresholding mechanism, binary images (IBW in Fig. 3) were
extracted, where non-zero pixels form connected components
which are either parts of the SD wavefronts or non-SD activities
in the brain. Through the following steps, we classified these
connected components and detected and tracked SD wavefronts.

Subsampling and optical flow calculation. We temporally sub-
sampled the series of binary images (IBW) every 30 s. Since the
extracted power envelopes and depression signals (SXcorr) have a
very slow temporal pattern in the order of minutes, this temporal
subsampling significantly reduces the computational complexity
of the WAVEFRONT for noninvasive detection of SDs in these
TBI patients, without adversely affecting the SD detection per-
formance. In addition, due to the very low density of the CNS
EEG grid in this study (only 19 electrodes), we spatially sub-
sampled IBW images so that the inter-electrode distances in these
2D images are less than three pixels. This helps to better capture
the propagation of SD wavefronts across EEG electrodes in these

binary images and further reduces the computational power
required for the downstream analysis in WAVEFRONT. We used
the bicubic interpolation method51, and its Matlab
implementation52, for spatial subsampling of IBW. We carefully
chose the parameters of the interpolation kernel (standard
deviation σ) and the spatial subsampling rate so that the corre-
sponding pixels of each electrode location on the scalp have a
representation in the lower resolution binary image. Therefore,
we do not expect to have missed any connected component
(wavefront) in the lower resolution binary image. After these
subsampling steps, we closely followed the steps in ref. 30 for the
calculation of optical flows to capture the movements of con-
nected components and SD wavefronts.

Advancing on30, we made minor modifications and improve-
ments to the way we estimate optical flows. Optical flow is a
computer vision technique to track moving objects across frames
of a video46,47. It uses the spatiotemporal brightness variations of
the pixels to estimate the velocity (magnitude and direction) of
the moving objects. The optical flows of the depressions were
calculated based on the 2D images, which are the cylindrical
projections of scalp electrode locations onto a 2D plane. In these
2D images, the horizontal dimension captures the azimuthal
angle (ϕ), and the vertical dimension captures the polar angle (θ,
with θ ¼ π

2 to be at the north pole) of the electrode locations in
the spherical coordinate. Therefore, to estimate the optical flows
of the connected components (the contiguous non-zero pixels in
IBW) in spherical coordinates, based on the calculated optical
flows in the 2D images, we defined the following mappings for the
vertical and horizontal optical flow magnitudes:

Vxðϕx; θyÞ ¼ rΔϕV2D
x ðx; yÞcosðθyÞ

Vyðϕx; θyÞ ¼ rΔθV2D
y ðx; yÞ ð1Þ

where r is an average human head radius (we used r= 75 mm in
this study), V2D

x ðx; yÞ and V2D
y ðx; yÞ are the horizontal and vertical

magnitudes of the estimated optical flow at (x, y) on the 2D plane,
and Vx(ϕx, θy) and Vy(ϕx, θy) are their corresponding magnitudes
on the spherical model of the scalp. (ϕx, θy) is the corresponding
spherical coordinate of the (x, y) location in the 2D plane, and Δϕ
and Δθ are the azimuthal and polar resolution of each pixel in the
2D images. Supplementary Fig. 4 shows an example of this
mapping for an optical flow. We used the mapped V= (Vx,Vy)
spherical optical flows instead of the original 2D optical flows
V2D ¼ ðV2D

x ;V2D
y Þ throughout the next steps of WAVEFRONT. It

is worth mentioning that V= (Vx,Vy) is an estimation of the
extent of movements for the connected components in mm on
the spherical scalp surface rather than in pixels on the 2D images.
This makes it easier to impose constraints on the speed of
propagation of connected components for the detection of SD
wavefronts (see the “Scoring OBBoxes based on the consistency of
propagation” subsection for more details).

Quantization of orientations. We closely followed the steps in our
previous work30 to assign bounding boxes—i.e. BBox—to the
connected components in IBW, calculate an orientation histogram
for each BBox and quantize the orientations of optical flows, and
finally extract prominent direction(s) of propagation in each
BBox. In this study, we introduced an additional constraint on the
effective propagation of each BBox before quantization. This
additional step was designed to reject the pop-up/fade types of
transition of the connected components in the binary images
around each electrode location in IBW. Supplementary Fig. 5a
shows an example of pop-up/fade transition in the binary images,
while Supplementary Fig. 5b shows a BBox with significant
effective propagation. The low density of the EEG grid in this
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study makes it impossible to capture small movements of SD
wavefronts unless they propagate sufficiently across the 2D
planes. Therefore, to reduce the false alarms because of these pop-
up/fade transitions, and only considering the propagating
depressions across scalp electrodes, we tried to detect non-
propagating BBoxes and remove them. We defined and calculated
the effective propagation measure or EPM for each BBox, based
on the estimated optical flows, as follows:

EPM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nopt
∑
Nopt

i¼1
kVik cosðαiÞ

 !2

þ 1
Nopt

∑
Nopt

i¼1
kViksinðαiÞ

 !2
vuut

ð2Þ
where, ∥Vi∥ and αi are the magnitude and orientation of the ith

optical flow in the BBox, and Nopt is the total number of optical
flows in that BBox. The first term under the square root in (2)
captures the average horizontal magnitude, and the second term
captures the average vertical magnitude of the flows in a given
BBox. EPM can take values between 0 and 1, where EPM= 0
indicates that all optical flows in the BBox are directed either
inward (a fading connected component), outward (a popping-up
connected component), or have zero magnitudes (no movement
in the corresponding connected component). We apply a
threshold on EPM values of BBoxes and remove the BBoxes and
their optical flows if EPM < Thr2, where Thr2 is a learnable
parameter in the modified WAVEFRONT algorithm (see Results
for details on the training and validation process). The remaining
optical flows were quantized using the orientation histograms,
following the steps in30. Due to the low-resolution EEG grid in
this study, we used a coarser orientation histogram with 8 bins of
45∘ each.

Orientations bounding boxes (OBBox). We extracted the orien-
tation bounding boxes (OBBox) using the quantized orientations
of optical flows (green boxes in Fig. 3), closely following the steps
in ref. 30.

Scoring OBBoxes based on the consistency of propagation. We
closely followed the steps in our previous work30 to score the
OBBoxes. We used a spatial radius of 7cm (to cover the large
inter-electrode distances in this low-resolution EEG grid), and a
temporal range of Thr3 min (Thr3 min before and Thr3 min after
the current frame) to find the neighbors of each OBBox. The
algorithm learns the temporal range of Thr3 through the
training process. We imposed speed constraints on the propa-
gating wavefronts and removed the OBBoxes with very fast
(> 8 mm/min) or very slow (< 0.5 mm/min) propagation,
counted the number of matching OBBoxes for each of the
remaining boxes, and considered this count as a spatiotemporal
score to each OBBox. In addition, we calculated the temporal
score for each OBBox to measure the consistency in the pro-
pagation of wavefronts over time. If the fraction of the number
of frames with non-zero temporal scores over the total number
of frames in the Thr3 min neighborhood is less than Thr4 (i.e.,
only a small number of frames contribute to the spatiotemporal
score), we remove the corresponding OBBox (i.e., assign zero to
its spatiotemporal score). Thr4 is another learnable parameter in
the WAVEFRONT algorithm and takes values between 0 (no
contributing frame to the score of the OBBox) and 1 (all frames
in the temporal neighborhood of the current frame, defined by
Thr3, contribute to the score of the corresponding OBBox).

Stitching process and the final decision on detection. We rejected
the OBBoxed with small spatiotemporal scores (less than 1% of
the maximum available score at each frame), and rejected the

frames with small frame scores (scores of less than 5% of the
median of the frame scores). As the final step, we stitched
together the selected frames using a sliding time window of
2min and closely followed the steps in ref. 30 to obtain the final
temporal detection output Tout (1=detected SD at the corre-
sponding frame, 0=no SD wavefront was detected at the cor-
responding frame). Supplementary Fig. 6 shows an example of
SD detection for patient 6, with a single isolated SD event in a
~ 3-hour time window. Please note that in this study, we did not
use the spatial detection output (Iout) of the WAVEFRONT
algorithm for performance evaluation since we lacked the spatial
ground for SD wavefronts. Detailed discussions on the limita-
tions of WAVEFRONT and the ground truth annotations are
included in Discussion.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
In this section, we quantify the performance of our modified
WAVEFRONT algorithm, as described in Methods, on 12 TBI
patients in the SD-II dataset (see Table 1 and Methods for more
details on these patients). We explore the generalizability of our
algorithm through a cross-validation analysis and compare the
performance of WAVEFRONT across different EEG frequency
bands. With an emphasis on the trustworthiness of our method,
we provide different visual illustrations of the SD detection
results, including temporal and spatial visualization of repre-
sentative SD events, and carefully define the performance metrics
we used. Finally, we evaluate the performance of WAVEFRONT
in measuring the frequency of SDs (the number of occurrences)
in large (30-hour) time windows using regression analysis.

Performance rules and metrics. We assessed the average SD
detection performance of WAVEFRONT by examining the per-
formance on overlapping time windows, each with a width of
WL= 2min and step size of ΔW= 30 s. In doing so, we used the
following conditions and definitions:

If a time window includes an annotated SD, it is called an SD
window. An SD window is said to be detected by WAVEFRONT
if there exists a non-zero Tout value within a temporal distance of
Δt from the annotated SD in the SD window. We chose Δt= 1-
hour, because of the following reasons: (i) for visually observed
SDs in DHC patients based on noninvasive EEG signals, the
reported time interval between the lowest depression points at
two scalp electrodes is 17 min (median) with 11–34 min
interquartile range24; therefore, we examined within Δt= 1h
around each SD annotated event; (ii) the average interelectrode
distance of the EEG system used in this study is ~ 5.4 cm, and the
reported range of speed of SD propagation is 1–8 mm/min40;
consequently, it takes ~ 54 min for the slowest depression to
propagates between each pair of electrodes on the scalp; (iii) in
addition, the temporal annotation of SD was extracted using the
ECoG strip which only covers a local region, while the detection
is based on the ipsilateral EEG electrodes which cover the whole
DHC hemisphere. Therefore, an SD event have been detected at
any time within the duration of propagation, and hence within a
temporal distance from its annotation. This is a limitation of the
SD ground truth in this study, and the choice of Δt= 1hr is only
an assumption, which may have resulted in slight over or
underestimation of the actual performance of WAVEFRONT in
the detection of SD events. A performance metric of the true
positive rate (TPR) was defined based on the SD windows as
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follows:

TPR ¼ number of detected SD windows
total number of SD windows

ð3Þ

If a time window includes detection (intervals with non-zero
Tout), and no annotated SD is found within a temporal distance of
Δt from the detected intervals in that window, it is considered a
false alarm window. In addition, time windows without any
detection and any annotated SD inside or within a temporal
distance of Δt from either end of the windows are considered true
negative windows. A performance metric of the false positive rate
(FPR) is defined based on the true negative and false alarm
windows as follows:

FPR ¼ number of false alarm windows
number of false alarm windowsþ number of true negative windows

ð4Þ
For diagnosis of worsening brain injury and clinical applica-

tions, achieving a low false alarm rate is crucial to minimize the
risks and side effects of unnecessary treatments and interventions,
especially invasive interventions such as DHC, for minimizing
secondary brain injury. However, since the dataset was highly
imbalanced (the number of non-SD windows was much larger
than the number of SD windows), a seemingly low FPR could still
have had a large number of false alarm windows. Therefore, we
used an additional performance metric, called precision or
positive predictive value (PPV)53, defined as:

PPV ¼ number of detected SD windows
number of detected SD windowsþ number of false alarm windows

ð5Þ
We also defined Qavg, a measure of signal quality for each

(sliding, 2 min) time window, as the number of electrodes,
averaged over the 2-min interval, that are not masked out in the
window over the hemisphere with DHC. There are 11 electrodes
ipsilateral to the site of ECoG placement (see Fig. 2a) since we
included electrodes on the midline in the ipsilateral set. We chose
a threshold of Qavg ≥ 6 for defining whether a time window has
good-quality recordings. Thus, time windows with Qavg < 6 were
excluded from the SD detection performance calculations. In all,
there were 36,709 excluded poor-quality windows (approximately
28% of the windows) across 12 patients. This large number of
poor-quality windows was mainly due to the long time intervals
during which the patients were disconnected from the EEG
amplifier for procedures or imaging. During these intervals, the
recordings were not stopped. Other poor-quality intervals may
have been in partly due to the inherent limitations of scalp EEG
recordings, e.g., low density of EEG electrodes (only 11 ipsilateral)
at ICUs increases the chance of recording intervals with almost
no reliable EEG signal. Higher spatial coverage of EEG electrodes
on the ipsilateral hemisphere can mitigate this issue. In addition,
DHC patients have highly concave scalp surface on the
hemisphere with missing skull35, making the scalp electrode
placement and creation of good electrode-scalp contact even
more challenging. This was another important contributing factor
for the large number of poor-quality windows in this study.
Nevertheless, there was a large number of remaining good-quality
SD and non-SD windows (92,583 in total), which were distributed
across the 12 patients and used for the calculation of
WAVEFRONT’s SD detection performance.

All bounds on the average reported TPR and FPR performance
metrics reported here are 95% confidence intervals, which are
estimated using the weighted bootstrapping method54,55, with a
bootstrap sample size of 100 (randomly selected with replace-
ment). The weights are the number of non-SD windows for FPR

confidence intervals and the number of SD windows for TPR
confidence intervals.

Testing WAVEFRONT’s generalizability using a cross-
validation analysis
Leave-2-out cross-validation. To evaluate the generalizability of
WAVEFRONT and detect and prevent overfitting of our
algorithm56, we used cross-validation. We split the dataset into
sets of train and validation patient groups, found the optimal sets
of parameters for WAVEFRONT on the train sets, assessed the
SD detection performance on the validation sets, and averaged
the performance on different validation sets. Specifically, we used
Leave-2-out cross-validation (L2O CV). We chose two patients
out of the total 12 patients and left them out for validation in
12
2

� �
¼ 66 different ways. For each of these 66 choices, we

finetuned WAVEFRONT parameters using the 10-patient train-
ing set, following the steps below:

Using the defined performance metrics in the previous section,
we optimized the parameters (Thropt1 ,Thropt2 ,Thropt3 ,Thropt4 ) in
WAVEFRONT for the best possible train performance (i.e.,
lowest possible FPR) while maintaining a good detection power
(high TPR) and precision (high PPV). This optimized set of
parameters was then used to evaluate WAVEFRONT’s perfor-
mance on the corresponding validation set. We used a brute-force
grid search to find the best set of parameters (list of search grids is
included in Supplementary Table I). The following are the training
and validation steps for each pair of train-test sets: (i) using
the values in the search grids and for each set of (Thr1,
Thr2,Thr3,Thr4), the performance of WAVEFRONT was evaluated
on the train set; (ii) a TPR threshold (ThrTPR) was then applied on
the train performance, and among the sets of parameters with
train TPR≥ThrTPR, the one with the minimum FPR was chosen as
the optimized set; (iii) WAVEFRONT, using the optimized set of
parameters, was applied on the validation set to obtain the
validation performance. We repeated these steps for all of the
train-validation pairs and averaged the train and validation
performance across all of the 66 pairs of train-validation sets.
We calculated the average performance for different ThrTPR values
in the range of [0.5, 0.85]; and (iv) the optimal operating point
(i.e., ThroptTPR) and its corresponding optimal set of parameters were
found using the underfitting-overfitting (also known as bias-
variance) tradeoff57. We define a cross-validation root-mean-
square error (RMSE) using the averaged TPR and PPV values as
ϵCV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� TPRÞ2 þ ð1� PPVÞ2

p
. The average validation per-

formance corresponding to the minimum cross-validation error
ϵCV with PPV ≥ 0.5 was reported as the generalization perfor-
mance. PPV= 0.5 is the threshold at which only half of the
detected intervals are true positives and the other half are false
positives.

The TPR-FPR tradeoff was captured in a receiver operating
characteristic (ROC) curve. We closely followed the threshold
averaging method in58 to generate the average train and
validation curves. Figure 4a shows the average train (solid blue
line) and validation (solid red line) ROC curves of WAVE-
FRONT’s performance in the detection of SDs using scalp EEG
Delta band ([0.5, 4]Hz) with TPR values along the vertical axis
and FPR values along the horizontal axis. PPV line of PPV= 0.66
is overlaid on top of the ROC curves, where the PPV > 0.66 region
is located above the corresponding PPV line. Figure 4b shows the
cross-validation error (ϵCV), color-coded across different points in
the validation ROC curve, where the point with the minimum
error (i.e., optimal operating point) is marked. Based on the
results, using Delta frequency band scalp EEG, WAVEFRONT
achieves an average validation performance of TPR= 0.74 ± 0.03
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(12,303 of 16,685 total SD windows were detected) in the
PPV > 0.66 ROC region, with FPR < 0.015 (0.0145 ± 7.57 × 10−4,
6339 of 437,849 total non-SD windows were falsely detected). All
the reported results are in 95% confidence intervals. This
operating point in the average ROC curve corresponds to an
optimal set of parameters as Thropt1 ¼ 0:3, Thropt2 ¼ 0:6,
Thropt3 ¼ 0:69, and Thropt4 ¼ 2. This point has the smallest
cross-validation error of 0.4256, while the points with higher
TPR show an increasing trend in the cross-validation error (i.e.,
overfitting56,57), and points with lower TPR have larger error as
well (i.e., underfitting56,57). In this study, overfitting is inevitable
due to the small number of patients. We expect WAVEFRONT to
achieve a better validation performance using a larger dataset for
the training process. This requires further investigation when we
receive access to the recordings of more patients with SDs.

We estimated the speed of propagation of detected SD events at
the found optimal performance point in the Delta band. For each
true detection event (connected 1’s in Tout which laid within Δt
temporal distance of the annotated SD events), we averaged over
the magnitude of optical flows of the corresponding detected

OBBoxe in the scalp spherical coordinates (kVk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x þ V2

y

q
,

see Methods for more details). Supplementary Fig. 7 shows the
histogram of the estimated speed of propagation for the true
detection events in the Delta band. Although no ground truth is
available for the speed of propagation of annotated SD events in
the dataset, this helps in understanding and comparing the range
of SD speeds in the scalp EEG with the available scientific
literature. Based on the results, the estimated speed ranges from
0.9 to 6.8 mm/min, which is a slightly smaller range in

comparison to the imposed speed constraints in WAVEFRONT
([0.5, 8] mm/min, see Methods), with the largest population
around 3.6 mm/min. This observation is consistent with the
widely reported range of 1–8 mm/min in the literature.

Figure 5 includes a spatiotemporal visualization of a sample SD
propagation event in patient 4 with clustered SDs. We ordered
the SXcorr time series in Fig. 5b using transverse and longitudinal
montages of the EEG electrodes (see Fig. 5a) to make it easier to
visually track the propagation of depressions in the extracted
SXcorr signals (see Methods). In this example, the SD wavefront
starts at Fp2 and Fz and gradually travels towards F4, ending at
T8 and C4 (spatial propagation of this SD wavefront is shown in
Fig. 5d). Figure 5c shows the MRI (left) and CT (right) scans of
this patient, where the location of the six ECoG electrodes (right
frontotemporal) is shown along with the locations of lesions and
DHC. In this sample visualization in Fig. 5, there are eight
clustered SD events (more than two SDs in a time interval of
three hours or less10,19), where WAVEFRONT detects five SD
events in three detection intervals (blue strips in Fig. 5b). This
illustrates how WAVEFRONT, at least with low-density EEG, can
under-detect SD events, especially when they are clustered.

In Supplementary Fig. 6, a similar visualization is shown for a
single and isolated SD event in patient 6 (see the CT scan of this
patient in Fig. 1). In this example, the SD depression first shows
up at Fp2 on the scalp and slowly propagates towards F4, ending
at C4 (a longitudinal path); at the same time, another propagation
is observed far away from the ECoG strip (shown as six small red
circles), following the path of P4-Pz-O2. The observed depression
at C4 is spatiotemporally consistent with the intracranially
annotated depression at t3.

Fig. 4 WAVEFRONT performance evaluation using a cross-validation analysis. a Receiver operating characteristic (ROC) curves of the average train
(solid blue curve) and validation (solid red curve) performance of WAVEFRONT in the detection of spreading depolarization (SD) events, using
noninvasive scalp electroencephalography (EEG) signals in the Delta frequency band. The shaded blue and red regions show the 95% confidence intervals
for the average train and validation curves, respectively. The vertical axis indicates true positive rates (TPRs), and the horizontal axis shows false positive
rates (FPRs). The green highlighted region indicates the positive predictive values of ≥0.66 (PPV), b Zoomed-in version of the ROC curves around the
optimal validation operating point (TPR= 0.74 ± 0.03, and FPR= 0.0145 ± 7.57 × 10−4; in 95% confidence intervals), c Cross-validation error (ϵCV), color-
coded across different points in the validation ROC curve, where the point with the minimum error (i.e., optimal operating point) is marked.
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SD detection performance using different scalp EEG frequency
bands. We band-pass filtered the scalp EEG signals in different
frequency ranges—[0.001, 0.01]Hz (near-DC), [0.5, 4]Hz (Delta),
[4, 8]Hz (Theta), [8, 12]Hz (Alpha), and [12, 30]Hz (Beta)—to
explore the feasibility and performance of noninvasive detection
of SD events across frequency bands. An SD propagation may
show up as propagating DC shifts across electrodes in the near-
DC components or propagating depressions (power reductions)
in higher frequency components (> 0.5 Hz). In ref. 24, Hartings et
al. reported that EEG Delta band power, on average, depressed to
47% of its baseline during SD events observable in the EEG
recordings, whereas other higher-frequency bands experienced
less power reduction (i.e., Theta, Alpha, and Beta bands main-
tained around 60% or more of their baseline power). In addition,
since around 81% of the total power of baseline EEG (without
SD) was concentrated in the Delta band24, the contrast between
the background EEG power (baseline) and the maximum
depressions during SD episodes was much higher for the Delta
band in comparison to the higher-frequency bands. Therefore, we
expected to observe a decreasing trend of WAVEFRONT per-
formance as the function of frequency bands. To test this

hypothesis, we trained and validated WAVEFRONT based on the
different frequency bands of near-DC, Theta, Alpha, and Beta by
closely following the steps in the previous section. The average
validation ROC curves for different frequency bands are shown in
Fig. 6. Based on the results, in the same ROC region of PPV ≥
0.50, the Delta band achieves the best detection performance
(TPR= 0.74 ± 0.03, FPR= 0.015 ± 7.57 × 10−4), followed by
Theta (TPR= 0.73 ± 0.031, FPR= 0.020 ± 0.0015), Alpha
(TPR= 0.65 ± 0.039, FPR= 0.020 ± 0.0011), near-DC (TPR=
0.63 ± 0.013, FPR= 0.018 ± 7.05 × 10−4), and Beta (TPR= 0.59
± 0.034, FPR= 0.016 ± 0.0011), all reported in 95% confidence
intervals. This SD detection performance trend across different
frequency bands is consistent with the expected outcome based
on the reported results in24 using visual inspection of SD events
in the scalp EEG recordings. Although the propagating DC shifts
are well-known signatures of SD waves in the ECoG recordings of
the brain8, WAVEFRONT has lower SD detection performance
using near-DC components of scalp EEG signals (11% less TPR,
0.4% more FPR, and 9% less PPV) compared to the best per-
formance among higher-frequency bands (i.e., the Delta band).
Previous works also reported no propagating DC shifts9,25, or

Fig. 5 Visualization of a sample SD event in patient 4 with clustered SD events. a transverse and longitudinal montages of ipsilateral
electroencephalography (EEG) electrodes. These montages order the electrodes so the signals of anatomically neighboring electrodes are located next to
each other in the temporal plots. b Time traces of SXcorr and electrocorticography (ECoG) signals, where three time-points of the selected spreading
depolarization (SD) event are marked as t1, t2, and t3 with maximum depressions (peak in SXcorr) at (Fp2, Fz), F4, and (C4, T8) respectively. c Magnetic
resonance imaging (MRI, on the left) and computed tomography (CT, on the right) scans of this patient, where the locations of lesions and injuries are
shown, along with the right decompressive hemicraniectomy (DHC) region and the intracranial strip of ECoG electrodes. d Scalp topography of SD
depressions at the three corresponding timepoints. The intracranial ECoG strip is located around the right frontotemporal lobe. The detected events
(Tout= 1) using WAVEFRONT are marked with blue strips in (b), where the under-detection of WAVEFRONT is apparent, along with some missed
detection intervals. A total of five SD events are detected in EEG; eight are marked in the ECoG signals. Some of the propagating depressions in (b) are
marked with gray arrows across the SXcorr signals, which correspond to the SD events in this time window.
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very few consistent DC shift propagations in the scalp EEG sig-
nals, in comparison to the ECoG recordings of the SD events24.

Performance of WAVEFRONT in prediction of SD frequency.
In this section, we explore the performance of our method in
predicting the frequency of SDs from the total minutes of
detected SD events. This analysis is inspired by the recent work of
Jewell et al.10, where a linear regression was used to estimate the
number of SDs in 24-hour time windows. In ref. 10, to automate
ECoG-based SD detection, Jewell et al. developed a technique for
real-time SD detection using ECoG signals by combining features
from low-frequency bands (e.g., slow potential changes in
0.005–0.5 Hz) and high-frequency bands (e.g., reduction of
envelope amplitude in 0.5–45 Hz). They reported a regression
slope of ~ 0.79 with a 0.9% false alarm rate in 18 acute brain
injury patients with DHC. In10, the overall sensitivity was cal-
culated by comparing the number of detected SDs to the number
of ground truth SDs in 24-hour nonoverlapping time windows
across patients. They used a linear regression for this comparison
and reported a slope of ~ 0.79. The reported false positive rate
(FPR) is a median value of the calculated FPR for each of the
24-hour time windows, where the negative events are defined as
20 min periods without any ground truth SDs.

The frequency of SD occurrence could serve as a metric to help
clinicians make an informed decision about the choice of
medications and/or invasive procedures for brain injury patients.
Frequent occurrence of SDs in continuous recordings of the brain
is correlated with worsening brain injury and poor outcomes in
acute neurological conditions such as hemorrhage, ischemic
stroke, and TBI5,10,39,59. Therefore, estimating the frequency and
duration of SDs could be an important step toward personalized
medicine.

WAVEFRONT’s 74% detection rate of SD events is promising,
but is it sufficient for noninvasive estimation of the frequency of
SDs? To evaluate WAVEFRONT’s performance for this purpose,
we performed the following steps: (i) we extracted overlapping
30-hour time windows with a step size of 1-hour across all of the
12 patients. Time windows with poor EEG quality were ignored,
i.e., windows with less than 20-hour of reliable (not masked out,
see Methods) EEG signals across ≥5 ipsilateral scalp electrodes.
There are Nw= 153 total time windows with good EEG quality
(based on the definition provided above) in this dataset. (ii) For
each time window, we applied WAVEFRONT to obtain the

temporal detection output Tout (see Methods for details), where
Tout= 1 indicates the detected SD events at the corresponding
timepoint. (iii) We pruned and stitched together the detected
intervals in each of the 30-hour windows. We removed isolated
small detection intervals, which are less than 20 min long and
separated from other detection events with more than a 4-hour
temporal distance. After this pruning step, the remaining detected
intervals were stitched together in a 4-hour sliding time window.
This stitching process was at a very large temporal scale, in
comparison to the original stitching process in the last step of
WAVEFRONT (see Methods for details). We were not looking
for the single-SD detection performance in this analysis, but the
performance of WAVEFRONT in predicting SD frequency using
the total duration of detections. Figure 7 shows the total duration
of detected events for each of the 153 time windows (blue dots) as
a function of the number of annotated SD events. The number of
SD events in these time windows ranges from 0 to 75, and the
total detection duration in each time window lies in the range of 0
to 26.85-hour. In this figure, the increasing trend of detection
duration as a function of the frequency of SDs is as expected. In
addition, some piecewise flat parts around intervals of 22 to 37
and 54 to 75 SDs are observed in Fig. 7, resulting from the under-
detection of SD events in the time intervals. (iv) Finally, we
measured the performance of WAVEFRONT in the estimation of
the number of SDs from the total duration of detected SD events
in the 30-hour time intervals. A square root regression model of
a
ffiffiffi
x

p þ b was used, where the number of annotated SDs in each
window is the independent variable, and the total duration of
detections is the observation. We chose a square root model due
to the sublinear increasing trend of the total duration of
detections for the larger numbers of SDs (e.g., ≥25 SDs).

This sublinear increase rate of detection durations was caused
by the under-detection of SDs, especially the highly clustered
events, which underscores the limitation of WAVEFRONT in
individual detection of SDs in such highly clustered events. We
fitted the square root model to the observations using a least
square regression.

Preliminary results, albeit with limited data, suggest that
WAVEFRONT can reliably estimate the number of occurrences
of SDs in long time intervals of 30-hour, with R2≃ 0.71 and

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nw

∑Nw
i¼1 ðxi � x̂iÞ2

q
’ 12.8 SDs, using a square root

regression, as shown in Fig. 7. xi is the number of annotated SDs

Fig. 6 WAVEFRONT performance evaluation across different scalp EEG frequency bands. a Receiver operating characteristic (ROC) curves of the
average validation performance of WAVEFRONT in the detection of spreading depolarization (SD) events using noninvasive scalp electroencephalography
(EEG) signals across different frequency ranges: [0.001, 0.01]Hz (near-DC, yellow curve), [0.5, 4]Hz (Delta, red curve), [4, 8]Hz (Theta, pink curve), [8,
12]Hz (Alpha, green curve), and [12, 30]Hz (Beta, cyan curve). The vertical axis indicates true positive rates (TPRs), and the horizontal axis shows false
positive rates (FPRs). The black line indicates the positive predictive value of 0.50 (PPV), and the region above this line shows the operating points with
PPV≥0.50, b Zoomed-in version of the ROC curves around the optimal validation operating points across different frequency bands. The best SD detection
performance corresponds to the Delta band, followed by the Theta, Alpha, near-DC, and Beta bands.

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00344-3

12 COMMUNICATIONS MEDICINE |           (2023) 3:113 | https://doi.org/10.1038/s43856-023-00344-3 | www.nature.com/commsmed

www.nature.com/commsmed


in the i-th window, and x̂i ¼ yi�b
a

� �2
is the estimated number of

SDs through the regression analysis based on the total duration of
detections in each time window (i.e., yi). Based on the results,
WAVEFRONT can successfully discriminate between long
windows of recordings with a large number of SDs (e.g.,> 40)
and small number of SDs (e.g.,< 20), and estimate the frequency
of SDs with a RMSE of less than 13 SDs. Such an analysis can also
be used to assign the patient an SD score. Figures 8 and 9 show
the detected intervals (marked with red strips on the bottom)
along with the ground truth annotated SDs (dashed vertical lines)
in some sample time windows with a small, medium, and large
number of SDs. Figure 8a corresponds to point A in Fig. 7 and
shows the detected false alarms in a patient without any SDs
(patient 7), with a total detection duration of 558 min. The quality
of the EEG recording in this time window is poor, with large
portions of four of the electrodes’ signals missing. This may
explain the large number of false alarm detections. Figure 8b
corresponds to point B and shows a 30-hour time window with
seven SD events, where the WAVEFRONT algorithm successfully
detects the isolated event, as well as the clustered scCSD events
(see Methods for the definitions of SD annotations). Figure 9a
and b show time windows with a larger number of SDs, in two
patients with right (patient 3) and left (patient 12) DHCs. These
windows correspond to points C and D in Fig. 7) with 41 and 75
SDs respectively, with highly clustered detection intervals. There
are some missed SDs in between the two detection intervals in
Fig. 9b, which may be due to the removed outlier artifact across
all of the EEG electrodes.

Why choose overlapping 30-hour windows?. We intentionally
chose a large window size of 30-hour to include windows with a
large number of SDs (up to 75 SDs in a single window). This was
important to explore the performance of WAVEFRONT for
highly clustered SDs (see Figs. 7 and 9). The choice of 30-hour

window length was based on a heuristic approach to cover the
widest possible range for the number of SDs across windows. The
choice of overlapping windows in the SD frequency analysis was
due to the limited available data and small number of patients in
this study. This helped us have sufficient data points (blue dots in
Fig. 7) across different numbers of SDs (the horizontal axis) for
the regression analysis. However, the overlap introduces unde-
sirable correlations in the data points for the regression analysis.
This is a shortcoming due to the small dataset in this study. More
accurate estimation of the number of SD events requires further
improvements in the algorithm and a larger dataset with a wide
variety of frequencies and types of SD events across patients.

Discussion
In this study, we explored the feasibility and quantified the per-
formance of automated noninvasive SD detection using con-
tinuous scalp EEG recordings from 12 severe TBI patients. These
patients underwent DHCs and experienced 700 total SD propa-
gation events over days (95 ± 42.2-hour) of simultaneous EEG
and ECoG recordings in ICUs. Intracranial signals were used for
SD event temporal annotation. Our previously proposed
WAVEFRONT algorithm30, with appropriate modifications and
improvements, achieves a reliable SD detection performance of
74% average cross-validation TPR (~ 13,000 of the ~ 17,000 total
SD windows across the validation sets are detected), with less
than 1.5% average cross-validation FPR (less than 7000 false
alarms among the total 450,000 non-SD intervals) using Delta
band scalp EEG signals. For the two patients without any anno-
tated SD, the average false alarm rate is 1.7%, similar to the
overall average of 1.5% cross-validation FPR. To understand the
clinical implications of this, we evaluated the performance of
WAVEFRONT in predicting of the number of SDs in long
30-hour time intervals using a square root regression. Preliminary
results, albeit with limited data, suggest that WAVEFRONT
achieves a promising performance (regression with R2≃ 0.71) in
the estimation of SD frequencies, despite a substantial number of
false alarms. The SD detection performance in the Delta band was
better than that in the Theta (73% TPR, 2.0% FPR), Alpha (65%
TPR, 2.0% FPR), near-DC (63% TPR, 1.8% FPR), and Beta (59%
TPR, 1.6% FPR) bands. This decreasing trend of SD detection
performance is consistent with the existing understanding and
literature, as the depth of SD depressions (i.e., percentage of
maximum power reduction from the baseline power) reduces in
higher-frequency bands, with the largest reported depression
depth, and highest baseline level in the Delta band EEG24.
However, although SPCs are the prominent signatures of SDs in
DC or near-DC ECoG signals8, WAVEFRONT’s performance is
worse when using near-DC EEG compared to the higher-
frequency components in the Delta band. This may be due to the
inherent limitation of EEG in capturing the slow DC shifts24, or
the limitation of WAVEFRONT in extracting SPCs. The esti-
mated average propagation speed of the detected SD events in the
EEG Delta band using WAVEFRONT is 3.35 ± 0.05 mm/min.

Real-time monitoring of patients with brain injuries is crucial
to predict and prevent worsening brain injuries through SD
detection at ICUs. Our modified WAVEFRONT algorithm in this
paper can provide SD detection results for each 4-hour time
window (epoch) with only 5 min computational delay (see Sup-
plementary Note 2 for details). The WAVEFRONT algorithm
achieves a reliable automated detection performance using scalp
EEG. Preliminary evidence in SD frequency analysis suggests that
WAVEFRONT achieves a promising performance in the pre-
diction of SD frequency in long time intervals. Increasing evi-
dence shows that SDs are reliable predictors of TBI patients’
outcomes5,10,19,60. WAVEFRONT can potentially be used for

Fig. 7 Performance of WAVEFRONT in prediction of SD frequency. Each
blue dot shows the total duration of detected spreading depolarization (SD)
events using WAVEFRONT in 30-hour time windows after pruning small,
isolated detection events and stitching together the remaining detection
events. The expected increased trend of total detection duration as a
function of the number of SD events was observed, with piecewise flat
parts around 22–37, and 54–75 SDs, which are the clustering detection side
effects in these time intervals. A square root regression model (red curve)
was fitted and used to quantify the prediction performance (R2≃ 0.71).
Detected intervals in windows with a small (point A and B), medium (point
C), and large (Point D) number of SDs are shown in Figs. 8 and 9.
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prognostication of worsening brain injury by providing a measure
of SD frequency.

Validation of WAVEFRONT on DHC patients is a good
starting point for noninvasive and automated SD detection
because: a) intracranial ground truth for SDs can be obtained by
placing ECoG electrodes during the DHC procedure, and b) head
layers, including skull, meninges, cerebrospinal fluid (CSF), and
scalp, have low-pass filtering or blurring effects on the scalp EEG
signals. This makes the detection and tracking of narrow SD
waves challenging29,30. This is less challenging in DHC patients
due to the absence of the low-conductivity skull layer. Never-
theless, the challenge is considerable: i) relative to ECoG, the
signal is more noisy and spatially low-pass filtered, and ii) as the
SD wave propagates into the sulcus, its representation in the scalp
EEG signals reduces substantially. This breaks the waves, as
measurable by EEG, into disconnected components, which we call
wavefronts30. Complex patterns of SDs (e.g., single gyrus61,62,
semi-planar62–64, etc.) can make the noninvasive detection of

these waves even more challenging. WAVEFRONT addresses
some of the difficulties in noninvasive detection of SD waves in
EEG. It breaks down the challenging task of detecting the whole
propagating SD wave in the brain using noisy and blurry filtered
scalp EEG signals into simpler tasks of detection and classification
of disjoint SD wavefronts. This overcomes the challenge related to
the effects of sulci and gyri discussed above and enables the
detection and tracking of complex patterns of propagation.

SD detection in patients with DHC is a clinically relevant pro-
blem. DHC is widely used for the management of severe TBI
patients35–37. Around 60% of these patients experience SDs, mostly
with a high frequency of occurrence10,39, which increases the
chance of worsening brain injury5,10,19. Every year in the United
States, more than 1.2 million TBI patients experience worsening
brain injury or death23. These patients form a large target popu-
lation for continuous monitoring of SDs in ICUs. Scalp EEG in
DHC patients provides wider spatial coverage of the brain than a
locally placed intracranial strip of electrodes on the cortex. It also

Fig. 8 Detected SD intervals in time windows with small number of SDs. Detection intervals (marked with red strips on the bottom) along with the
ground truth annotated spreading depolarizations (SDs, dashed vertical lines) in long time windows, where the preprocessed ipsilateral
electroencephalography (EEG) signals and electrocorticography (ECoG) signals are shown. EEG electrodes were ordered using the transverse montage
(see Fig. 5a). Signals were normalized by their standard deviations for the illustrative purposes: a a 26.6-hour time window, corresponding to point A in
Fig. 7, with no SD event in patient 7. However, there are large false alarm detection intervals with a total duration of 558min, which may be explained by
the poor quality of the EEG recording in this time window. b a 30-hour time window with seven SDs (two cortical spreading depressions (CSDs) and seven
single-channel CSDs (scCSDs)), which corresponds to point B in the regression figure, and recorded from patient 6. WAVEFRONT successfully detects the
the isolated CSD event as well as the clustered SD events toward the end of the window, with a total detection duration of 676min.
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has a higher spatial resolution in comparison to the EEG record-
ings from patients with an intact skull35 and is less risky than
intracranial electrode placement. Therefore, noninvasive detection
and monitoring of SDs in severe TBI patients with DHC can help
improve outcomes. In this paper, we only validated the perfor-
mance of our technique using ipsilateral electrodes in the hemi-
sphere with the removed skull, which limits the conclusions of this
study to patients with DHC. A major motivation of our work for
clinical management is to enable detection of SDs with an intact
skull. The use of ECoG placed after DHC as a ground truth in this
study was pragmatic, but limits the generalizability of our findings
to intact skulls. Methods for detecting SDs using invasive electrodes
with an intact skull have been established9. Electrodes can be
placed through burr holes in the skull (e.g., stereo EEG electrodes)
or over the cortex (e.g., subdural electrodes) with bone flap
replacements (e.g., the dataset in ref. 9).

There are limitations associated with the SD ground truth and
dataset in this study: (i) due to the limited spatial coverage of the
ECoG electrode strip, the temporal annotations may not reflect
the actual temporal onset of each SD event, and some of the SDs
may even be missed in the ground truth here because some of the

waves may have started to propagate from an origin far from the
intracranial strip. However, ipsilateral EEG electrodes provide full
spatial coverage of the DHC hemisphere. This ground truth
limitation makes it infeasible to quantify the performance of
WAVEFRONT in determining whether SDs are present or not in
each window. This may explain the limitation of WAVEFRONT
in discrimination between windows with and without SDs, as is
shown in Fig. 7. Another contributing factor to this poor dis-
crimination performance might be the inherent limitation of the
WAVEFRONT algorithm. This requires further study with higher
spatial coverage of subdural SD recordings. (ii) The depression
width, temporal duration, and propagation speed of SD waves are
unknown. This may result in slight over or underestimation of
the actual performance of WAVEFRONT in the detection of SD
events. Notably, the brains of the severe TBI patients in our
dataset had structural abnormalities due to the injuries and/or
surgical interventions for hematoma extraction, e.g. to alleviate
swelling. These structural abnormalities can affect the pattern and
speed of propagation of SDs. A ground truth with higher
spatial and temporal coverage and accuracy is warranted to fur-
ther explore these effects and assess the performance of

Fig. 9 Detected SD intervals in time windows with large number of SDs. Detection intervals (markedwith red strips on the bottom) alongwith the ground truth
annotated spreading depolarizations (SDs, dashed vertical lines) in long time windows, where the preprocessed ipsilateral electroencephalography (EEG) signals and
electrocorticography (ECoG) signals are shown. EEG electrodes were ordered using the transverse montage (see Fig. 5a). Signals were normalized by their standard
deviations for the illustrative purposes: a A 24.84-hour time window with 41 highly clustered SDs (point C in Fig. 7) in patient 3. b A 30-hour time window with the
largest number of SD events, 75 (point D in Fig. 7), in patient 12.WAVEFRONT detects long intervals in (a) and (b), with the total duration of 1248min and 1425min.
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WAVEFRONT. (iii) Due to the small number of patients in this
study, overfitting to the available SD events is inevitable (see
Results for a detailed discussion on this issue). We expected
WAVEFRONT to achieve a better average validation perfor-
mance by using a larger dataset of TBI patients with multiple SD
events across different varieties of propagation patterns (single-
gyrus, semi-planar, ring-shape, etc.), different ranges of propa-
gation speeds, and in different brain regions. Additionally, a
larger dataset would enable us to provide stronger statistical
guarantees for detection and discrimination. (iv) Low-density
EEG of this dataset limits the performance of WAVEFRONT.
Based on our reported simulation results in ref. 30, WAVE-
FRONT can detect narrow SD wavefronts, even single-gyrus SD
propagations, using a sufficiently high density of EEG electrodes
on the scalp. Thus, higher-density EEG might be needed for
milder TBIs with narrow SD wavefronts. Further studies are
needed to explore the effects of scalp EEG electrode montages and
density on noninvasive SD detection performance.

In addition to the limitations of the dataset and ground truth,
WAVEFRONT has inherent limitations: (i) this algorithm suffers
from under-detection of SD events because clustered SDs (more
than two SDs in a time interval of 3-hour or less10,19) in EEG
cannot be detected individually using our current approach. For
clustered SDs, where the baseline power in the higher-frequency
bands (≥ 0.5 Hz) is already suppressed, SPCs in the near-DC band
(1–10mHz) should be used for detecting and tracking of SDs.
WAVEFRONT needs further improvements for this detection (ii)
Although the average false alarm rate of ~ 1.5% may seem small,
this number corresponds to the ~ 33% of the total detected events
(i.e., out of the total detected events, around one-third of them are
false alarms). This can be a serious limitation for diagnostic and
monitoring goals, including cases where the risks and side effects of
interventions and treatments are high, and a much lower false
alarm rate is required. (iii) Finding the right set of stitching para-
meters in the SD frequency analysis is heuristic, and there is room
for improvements. This is a future direction for this work. Again,
increasing the size of the dataset can help reduce FPR further.

This work is an attempt to explore the feasibility and quantify
the reliability of noninvasive SD detection in severe TBI patients
using an automated algorithm. This can potentially be used for
prognostication of worsening brain injury, paving the way toward
personalized medicine.

Data availability
Supplementary Data 1 contains source data for the main figures with numerical results in
this paper. The dataset was obtained as part of a multicenter clinical study,
ClinicalTrials.gov ID number NCT00803036. The anonymized raw EEG dataset may be
made available upon request, contingent upon contractual obligations and data sharing
and cooperative agreements.

Code availability
WAVEFRONT was developed in MATLAB (R2018b), using standard toolboxes, and
EEGLAB toolbox (v2019.0)43. All MATLAB code is made available online on GitHub65

(https://doi.org/10.5281/zenodo.8210380).
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