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Introduction
Blood oxygen level-dependent (BOLD) functional magnetic reso-
nance imaging (fMRI) has revolutionized neuroscience research 
by providing a non-invasive method to visualize and quantify 

brain activity associated with various cognitive, motor, and emo-
tional functions.1 However, traditional fMRI methods face critical 
limitations in spatial and temporal resolution, which restrict their 
capability to detect subtle and detailed neural activation patterns 
necessary for precise diagnosis and scientific investigation.1,2

Recent advances in artificial intelligence, particularly deep 
learning, have shown promise in overcoming these limitations. 
Techniques involving convolutional neural networks (CNNs), 
Transformer-based architectures, and generative adversarial net-
works have significantly enhanced fMRI capabilities in terms 
of spatial resolution, automated segmentation accuracy, and the 
robustness of image registration processes.1,3 These methods en-
hance the visualization of neural activity and provide detailed in-
sights into brain structures and functions, facilitating more accu-
rate interpretations in both clinical and research contexts.4

Although deep learning techniques have been widely applied 
across various neuroimaging domains, research specifically evalu-
ating their effectiveness in individual brain regions remains com-
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paratively limited.5 Some studies have implemented deep learning 
approaches for segmentation and super-resolution reconstruction 
in specific brain regions.6–8 However, systematic evaluations 
across broader brain regions and large-scale clinical applications 
remain relatively scarce.

This narrative review aimed to comprehensively summarize 
and critically assess recent advancements in deep learning applied 
to high-resolution fMRI reconstruction, with a particular focus on 
image super-resolution, segmentation, and registration techniques. 
Additionally, it discusses the key challenges impeding clinical im-
plementation of these technologies, including computational costs, 
data heterogeneity, and limited generalizability across diverse 
patient populations and imaging settings. Addressing these chal-
lenges through standardized protocols and extensive multi-center 
validation studies will be essential for translating deep learning 
methods from research environments into routine clinical practice.

Literature search strategy
A comprehensive literature search was conducted across PubMed, 
IEEE, Scopus, and Web of Science to identify relevant articles re-
lated to brain segmentation, super-resolution reconstruction, and 
image registration. Search terms included “cerebellar segmenta-
tion”, “BOLD-fMRI”, “super-resolution reconstruction”, “deep 
learning”, and “image registration”. Only articles published in 
English between 2000 and 2023 were included. Studies that were 
case reports, reviews, or not focused on deep learning techniques 
were excluded. A narrative synthesis approach was used to sum-
marize the findings across the included studies. The data were 
categorized into three main areas: (1) segmentation of cerebellar 
tissues, (2) super-resolution reconstruction of BOLD-fMRI, and 
(3) registration algorithms. Where appropriate, findings were 
compared across studies, and key trends and knowledge gaps were 
highlighted.

Current landscape and challenges in deep learning for 
BOLD-fMRI
The three-dimensional segmentation algorithm for cerebellar tis-
sues in this study encompasses cerebellar segmentation for both 
structural and functional magnetic resonance imaging (MRI), 
super-resolution reconstruction, and BOLD sequence registration. 
Accordingly, we analyze current research in three key areas: seg-
mentation, super-resolution, and registration.

Status of research on image segmentation
In recent years, deep learning has achieved remarkable progress 
in medical image segmentation, leading to the development of 
several highly effective models. One pioneering model, U-Net, in-
troduced by Ronneberger et al.9 in 2015, employs an encoder-de-
coder architecture with skip connections, enabling the integration 
of multi-resolution features. U-Net has been extensively applied 
to tasks such as cell nucleus segmentation, organ segmentation, 
and lesion detection. Subsequently, Milletari et al.10 introduced V-
Net in 2016, a model specifically designed for 3D segmentation. 
V-Net is capable of processing volumetric data, making it particu-
larly suitable for applications involving computerized tomography 
(CT) and MRI scans. Attention U-Net enhances the standard U-
Net architecture by incorporating attention mechanisms,11 which 
allow the model to focus on relevant regions within an image, 
thereby improving accuracy in complex backgrounds. This model 
is especially effective for fine-grained segmentation tasks, such as 

tumor delineation. The DeepLab series,12 including DeepLabv3 
and DeepLabv3+,13 represents a significant advancement in high-
resolution image segmentation. These models employ dilated con-
volutions and atrous spatial pyramid pooling to capture multi-scale 
contextual information, enhancing segmentation performance. 
nnU-Net,14 proposed by Isensee et al.,14 is a self-adapting U-Net 
framework that automatically configures the network architecture 
and training strategies based on the dataset characteristics. This 
model has demonstrated exceptional adaptability and performance 
across a wide range of medical image segmentation tasks. Çiçek et 
al.15 extended the U-Net architecture to 3D U-Net, which is specif-
ically designed for 3D segmentation tasks involving organs such as 
the brain, lungs, and liver. This model leverages 3D convolutions 
to effectively capture volumetric information. Figure 1 presents 
sketches of the deep neural networks mentioned.

Transformer-based models have also made significant contri-
butions to medical image segmentation. Swin-Unet combines the 
strengths of the Swin Transformer and U-Net, utilizing hierarchi-
cal attention mechanisms to achieve multi-scale feature fusion and 
significantly improve segmentation performance.16 TransUNet 
integrates Transformer modules into the U-Net framework, effec-
tively handling complex image structures by capturing long-range 
dependencies.17 MedT (Medical Transformer) further exemplifies 
the potential of Transformer-based architectures in medical im-
age segmentation.18 By capturing long-range dependencies, MedT 
significantly enhances segmentation accuracy. Finally, SegResNet 
combines residual networks with U-Net, employing residual con-
nections to improve model depth and performance.19 This model is 
particularly well-suited for tasks requiring high-detail processing, 
such as tissue and lesion segmentation.

In summary, these deep learning models have demonstrated 
exceptional performance in various medical image segmentation 
tasks through continuous optimization and innovation. Their ad-
vancements have significantly propelled the field of medical im-
age processing, highlighting the transformative potential of deep 
learning in medical applications.

Status of super-resolution research
Image super-resolution reconstruction, a method of reconstructing 
low-resolution images into high-resolution images, is one of the 
key technologies used to improve the resolution of real-world im-
ages and videos in computer vision tasks. Image super-resolution 
reconstruction has been widely applied in the real world, including 
in hyperspectral imaging,20 medical image processing,21 and facial 
recognition.22 Apart from improving image resolution, image su-
per-resolution reconstruction also assists, to a certain extent, with 
other tasks related to computer vision.23 Due to the inadaptability 
of the image super-resolution problems, where multiple high-res-
olution images can correspond to one low-resolution image, the 
task of image super-resolution is quite challenging in the image 
reconstruction process.24

In recent years, with the application of convolutional neural 
networks in image super-resolution research, from the super-
resolution convolutional neural network,25 based on traditional 
convolutional neural networks, to the super-resolution generative 
adversarial network, based on deep residual generative adversarial 
networks,26 various image super-resolution methods based on deep 
convolutional neural networks, relying on different network archi-
tecture designs and training strategies, have developed rapidly to 
improve the performance of image super-resolution reconstruction 
tasks (Fig. 2).

Super-resolution of medical images refers to the acquisition 
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Fig. 1. Overview of deep learning architectures used in magnetic resonance imaging (MRI) super-resolution, segmentation, and registration. (a) A stand-
ard convolutional neural network (CNN) architecture commonly used for MRI image enhancement. (b) A generative adversarial network (GAN)-based ap-
proach for MRI super-resolution reconstruction, where the generator synthesizes high-resolution images from low-resolution inputs and the discriminator 
ensures realism. (c) A Transformer-based architecture, leveraging self-attention mechanisms to capture long-range spatial dependencies in MRI scans. (d) 
A U-Net structure for functional magnetic resonance imaging (fMRI) segmentation, demonstrating skip connections that help retain spatial information. 
(e) A deep learning-based image registration framework that aligns fMRI scans across different acquisition conditions. (f) A comparative analysis of differ-
ent deep learning models in terms of structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR), showcasing performance improvements over 
traditional methods.

Fig. 2. Super-resolution research section. (a) Simplified network architecture of the super-resolution convolutional neural network (SRCNN), structure-
preserved super-resolution (SPSR), and residual dense network (RDN). (b) Comparison of visual effects via different super-resolution algorithm outputs. 
The peak signal-to-noise ratio (PSNR)/structural similarity index measure (SSIM) values tested on the ‘Urban100’ dataset were 24.397/0.9381 for enhanced 
super-resolution generative adversarial networks (SRGAN), 24.360/0.9453 for European Space GaN (ESGAN), and 26.24/0.7989 for extended super-resolu-
tion convolutional neural network (ESRCNN) (×3). Residual channel attention networks (RCAN) generates straight but blurry edges for the bricks, while SPSR 
methods better preserve gradients and structures. AG, attention gate; BN, batch normalization.
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of low-resolution medical images from various medical imaging 
devices and the restoration of high-resolution medical images 
with rich details and clear textures using deep convolutional neu-
ral networks. This is conducive to clinical diagnosis, image seg-
mentation,27,28 image registration,29 image fusion,30,31 and three-
dimensional visualization of images in medical research. In the 
process of medical magnetic resonance (MR) image acquisition, 
various factors, such as imaging equipment, imaging techniques, 
external interference, and chessboard artifacts in boundary mod-
els and human tissue images, lead to low-resolution images and 
interfere with the accuracy of clinical diagnosis and subsequent 
medical research. Therefore, it is of great significance to use deep 
learning and other approaches to restore MR images with clear 
tissue boundaries and rich details. With the rapid development of 
deep learning and computer hardware, computer vision tasks have 
attracted increasing attention from the academic community, and 
researchers have begun to explore the application of CNNs to such 
tasks. Since Tian et al.32 initially applied deep convolutional neural 
networks to image super-resolution, the quality of image super-
resolution reconstruction algorithms based on these networks has 
significantly improved.

Moreover, Chao et al.33 proposed an enhanced deep super-reso-
lution network for single images, based on deep residual networks, 
to address the issue of shallow convolutional neural networks not 
being able to fully extract contextual feature information from im-
ages. By removing batch normalization from residual modules, 
they were able to stack more convolutional layers using the same 
computational resources, allowing the network to learn more con-
textual feature information. Given that the quality of reconstructed 
images can be improved by increasing the depth of convolutional 
neural networks in image super-resolution reconstruction task, 
Yang et al. successively proposed a deeply-recursive low- and 
high-frequency fusing network and a precise image super-reso-
lution method based on the depth convolutional neural network, 
the very-deep super-resolution network.34,35 While further improv-

ing algorithm performance by increasing network depth, various 
studies on image super-resolution based on convolutional neural 
networks have encountered issues such as vanishing and explod-
ing gradients during training. Cui et al.36 applied residual learn-
ing to computer vision tasks and proposed the image processing 
network ResLT. Building upon research on residual network for 
image processing, Ledig et al.26 proposed the super-resolution 
residual network, which utilizes the concept of residual learning. 
This approach avoids the loss of contextual information during 
image propagation through the network, addressing the gradient 
vanishing and exploding problems caused by increased network 
depth. Moreover, the super-resolution residual network shows im-
provement in preserving details in reconstructed images.

The application of attention mechanisms in image super-reso-
lution enhances the accuracy of reconstructed images to a certain 
extent. Zhang et al.37 developed the residual dense network by 
combining residual learning and further proposed an image super-
resolution network. Deep residual channel attention networks,38 
based on the channel attention mechanism, are illustrated in Fig-
ure 3. Du et al.39 achieved a reduction in network parameter count 
and an improvement in MR image super-resolution reconstruction 
quality by using depth-wise separable convolutions instead of tra-
ditional convolutional layers. However, the aforementioned image 
super-resolution reconstruction algorithms based on convolutional 
neural networks prioritize higher objective performance metrics but 
overlook perceptual image quality, resulting in problems such as ar-
tifacts and blurriness in the reconstructed super-resolution images.

Compared with conventional super-resolution algorithms based 
on interpolation theory, image super-resolution algorithms based 
on convolutional neural networks show remarkable enhancements 
in network performance and image reconstruction effects.40 How-
ever, due to the intrinsic limitations of image super-resolution, 
convolutional neural networks often encounter challenges such as 
checkerboard artifacts and loss of image details when reconstruct-
ing super-resolution images with high upscaling factors.41 This is 

Fig. 3. The network architecture of the residual channel attention network (RCAN). Low-resolution images (LR) are input, and feature maps are obtained 
through 3×3 convolution. After passing through a residual in residual (RIR) module, followed by upsampling and a 3×3 convolution layer, high-resolution 
images (HR) are obtained. RCAB, residual channel attention network; RG, residual group.
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mainly because, in convolutional neural networks, when the stride 
of the convolutional kernel is not equal to 0, it introduces interfer-
ence in computer vision research based on image super-resolution 
tasks. Li et al.42 introduced an image super-resolution algorithm 
based on generative adversarial networks to solve the image su-
per-resolution problem, thus further promoting the development 
of image super-resolution research. In order to solve the problem 
of image blur caused by detail loss in medical image super-reso-
lution models based on traditional convolutional neural networks, 
Inspired by Tran et al.,43 who introduced the disentangled repre-
sentation learning-generative adversarial network (DR-GAN) for 
pose-invariant face recognition, subsequent studies have extended 
similar adversarial and disentanglement principles to image super-
resolution tasks. These approaches aim to mitigate blurred edges 
and detail loss typically observed in CNN-based SR methods. 
Building upon the residual concept, Zhao et al.44 further proposed 
the laplacian pyramid generative adversarial network based on 
dense residual blocks. This approach effectively addresses blurri-
ness and size inconsistency in reconstructing medical images using 
existing image super-resolution algorithms. Wang et al.45 proposed 
the enhanced super-resolution generative adversarial network (ES-
RGAN) by introducing the residual-in-residual dense block on top 
of residual blocks in the network model, which significantly im-
proves the performance of generative adversarial network-based 
image super-resolution algorithms. By incorporating perceptual 
loss, adversarial loss, and a relative discriminator, the discrimi-
nator network assesses the relative authenticity of reconstructed 
images compared to traditional discriminator networks.46 This as-
sessment guides the generator network to produce more realistic 
images through parameter updates during training. Shang et al.47 
introduced the receptive field block ESRGAN, based on the en-
hanced generative adversarial network super-resolution algorithm, 
which features receptive field modules. These modules, with dif-
ferent sizes of receptive fields, enable the network to extract richer 
image detail features, thus enhancing the quality of reconstructed 
images. While existing image super-resolution methods based on 
generative adversarial networks have improved the overall visual 
quality of images in practical applications, they often introduce 
unnatural artifacts when reconstructing image details. Geets et 
al.48 proposed a method based on the statistical dependencies of 
image gradients and edges at different resolutions. Sun et al.49 
presented a method based on gradient contours representing im-
age gradients and gradient field transformations. Yan et al.50 intro-
duced an image super-resolution algorithm based on gradient con-
tour sharpness to improve the clarity of super-resolved images. In 
these methods, the statistical dependency relationship is modeled 
by estimating parameters related to high-resolution edges based 
on parameters learned from low-resolution images.50 Ma et al.51 
proposed a structure-preserved super-resolution algorithm based 
on gradient guidance. This approach employs second-order gradi-
ent constraints in deep generative adversarial networks to provide 
better structural guidance for image reconstruction, effectively ad-
dressing issues such as structural distortion in reconstructed im-
ages.51 Compared with super-resolution reconstruction algorithms 
using convolutional neural networks, medical image super-reso-
lution reconstruction algorithms based on deep generative adver-
sarial networks achieve higher accuracy in restoring edge details 
and texture information in reconstructed images, making the visual 
effects of reconstructed images more suitable for clinical diagnos-
tic needs. However, ordinary convolutional neural networks ex-
hibit translational invariance in convolutional kernels, causing the 
loss of shallow and local features in images as the network depth 

increases, resulting in blurred edges and potential checkerboard ar-
tifacts in reconstructed images. In contrast, image super-resolution 
reconstruction algorithms based on deep generative adversarial 
networks update generator and discriminator network parameters 
through backpropagation, guiding the generated sample values to-
ward more realistic values.

Status of image registration algorithm research
Currently, image registration algorithms can be divided into non-
learning-based methods and learning-based methods. Traditional 
non-learning-based registration methods are mainly feature-based 
registration algorithms. The following provides a detailed de-
scription of their research status.52 Feature-based registration al-
gorithms first extract features from the reference image and the 
floating image, generally including feature points, image edges, 
image structures, and statistical features. Then, through a match-
ing strategy, they establish correspondences between features and 
calculate the deformation parameters of the image pairs through 
feature matching. Specifically, feature-based image registration 
algorithms involve the following steps53:

Feature extraction
Feature extraction is a pivotal task in the image registration pro-
cess. It can be either manual or automatic, depending on the image 
complexity. Features such as closed boundary regions, textures, 
edges, points, lines, statistical features, and more advanced struc-
tures and semantic descriptions can serve as distinctive character-
istics. These features must be easily identifiable and invariant to 
ensure that both the reference and floating images share sufficient 
common features. Robust algorithms are required for feature de-
tection to extract as many features as possible from image pairs, 
irrespective of structural deformations.

Feature matching
The goal of this step is to establish precise correspondences be-
tween features, creating a matching method between the features 
of the reference and floating images. Various feature descriptors 
and similarity measures are employed to facilitate accurate feature 
correspondence. Feature descriptor designs should ensure the ac-
curate reflection of global or local image characteristics, even in 
the presence of noise.

Transformation model estimation
Registration transformation models encompass rigid and non-rigid 
transformations. The selection of a transformation model depends 
on the image acquisition process and prior knowledge of expected 
image deformations. To align the reference and floating images, 
the deformation parameters of the transformation model must be 
estimated using feature correspondences.

Image resampling
Resampling of the floating image is performed using the estimated 
optimal deformation parameters. Following the transformation of 
image coordinates, the resulting position coordinates are typically 
non-integer values. Thus, interpolation operations are commonly 
employed for image resampling to address this issue.

In the context of medical image registration, Al-Khafaji et al.54 
proposed the scale-invariant feature transform (SIFT) algorithm, 
which has been widely applied. SIFT, an early algorithm for key-
point detection, ensures invariance to translation, rotation, and 
other transformations. It requires extracting many point features, 
resulting in high computational complexity. To accelerate SIFT 
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feature computation, Bay et al.55 applied an improved algorithm, 
Speeded-Up Robust Features (SURF). SURF is more stable and 
computationally efficient than SIFT. Apart from SIFT and SURF, 
various other feature description operators have been utilized in 
image registration,56 such as Harris corners.57 Shen et al.58 pro-
posed the hierarchical attribute matching mechanism for elastic 
registration algorithm, which extracts a set of geometric moment 
invariants for each image point. Experimental results have dem-
onstrated its effectiveness in registering brain images with signifi-
cant anatomical differences. However, the hierarchical attribute 
matching mechanism for elastic registration algorithm requires 
pre-segmentation of brain tissues, which poses a challenge and 
limits its applicability. To overcome this limitation, Papamarkos 
et al.59 proposed an approach that achieves gray-level reduction 
through the combined utilization of both the image’s gray levels 
and additional local spatial features. These histogram-based attrib-
ute vectors exhibit rotation invariance and have been successfully 
applied to register various data, including brain MRI and diffusion 
tensor imaging. Nonetheless, registration results are significantly 
impacted by the accuracy of feature extraction. Inaccurate feature 
extraction can lead to substantial registration errors. Therefore, 
research on these algorithms primarily focuses on feature design.

With the rapid advancement of deep learning in computer vi-
sion and other fields, there has been an abundance of registration 
algorithms based on deep learning, with CNN playing a significant 
role in medical image registration. Early deep learning registra-
tion methods primarily focused on using deep learning to extract 
features from reference and floating images,60 or to learn similar-
ity metrics for image pairs.61 These learned features and similarity 
metrics were then integrated into traditional registration frame-
works to significantly improve registration effectiveness. Yoo et 
al.62,63 utilized a stacked convolutional autoencoder to extract fea-
tures from pairs of 3D brain MR images, followed by optimizing 
the normalized cross correlation between the two sets of features 
using gradient descent. The experiment indicated that in single-
modality registration, the feature descriptors extracted by deep 
learning might not surpass manually defined descriptors, but they 
could be used to obtain complementary information. Additionally, 
drawing on the registration experience of CT images, Zhu et al.64 
used a CNN to estimate the registration error of chest CT-MRI 
images and employed the learned registration error as a similarity 
metric for subsequent registration (Fig. 4).65

The advantage of deep learning in grayscale-based registration 
is particularly evident in multi-modal scenarios, where designing 
effective multi-modal similarity metrics is challenging. Andrade 
et al.66 designed a stacked denoising autoencoder to learn a simi-
larity metric for CT and MR images to achieve rigid registration. 
The multi-modal similarity metric learned by the model outper-
formed traditional NMI. These methods break the limitations of 
manually designed prior knowledge, effectively improving regis-
tration performance while retaining the iterative nature of tradi-
tional registration. However, these deep learning methods have not 
fundamentally solved the problem of slow registration speed due 
to iterative optimization. Therefore, more and more researchers 
are focusing on directly estimating deformation parameters using 
convolutional neural networks (ConvNets). Sankareswaran et al.67 
used ConvNets to learn rigid transformation parameters, showing 
significant advantages in registration accuracy and real-time per-
formance compared to grayscale-based methods. Huang et al.68 
trained ConvNets to directly estimate the displacement vector field 
of image pairs, achieving the same accuracy as traditional registra-
tion methods. Yan et al.69 proposed the adversarial image registra-

tion framework, inspired by generative adversarial networks, for 
rigid registration of 3D MR and transrectal ultrasound (TRUS) im-
age pairs. The generator estimates the deformation parameters of 
the image pair, while the discriminator distinguishes between real 
and predicted deformation images. The network is trained using 
an adversarial supervision strategy. These methods demonstrate 
good registration performance but require labeled training data. 
Typically, traditional registration methods are used to obtain de-
formation parameters or synthetic supervised training data is cre-
ated using random deformation parameters. It can be seen that the 
performance of such supervised methods largely depends on the 
reliability of the labels, which has driven the development of semi-
supervised registration models. Haskins et al.70 used label similar-
ity to train a CNN model for MR-TRUS image registration. In their 
initial registration scheme, two network models were used to train 
global affine transformation parameters and local dense deforma-
tion fields. The result of global registration was used as input for 
local registration, achieving coarse-to-fine registration. However, 
to further improve the practicality of the model, in subsequent 
work, they combined the two parts of the network into an end-to-
end framework, achieving end-to-end registration using CNNs. In 
another work, Saldanha et al.71 introduced a loss function based 
on label similarity and image grayscale similarity metrics on the 
basis of double supervision and weak supervision using breast 
phantoms, ultimately achieving deformable registration of 2D MR 
images, using both segmentation overlap distance and edge-based 
normalized gradient field distance to construct the loss function.

Blendowski et al.72 introduced an integrated multimodal reg-
istration method guided by a shape encoder-decoder network. 
First, a segmentation network is trained with anatomically labeled 
data, and then an energy-based iterative optimization method is 
used to estimate the deformation parameters between image pairs. 
This method relies on intermediate segmentation results but can 
simplify the registration of CT images and MR images in cases 
of large deformations.72 Similarly, Fu et al.73 used a Laplacian 
pyramid network with anatomical label supervision to overcome 
large structural differences between image pairs and used data aug-
mentation to mitigate overfitting. These semi-supervised methods 
reduce the model’s reliance on labeled data but are still largely in-
fluenced by real labels. Therefore, many researchers are focusing 
on the study of unsupervised registration models. Especially since 
the emergence of spatial transformer networks, a large number of 
spatial transformer network-based image registration models have 
emerged.74 de Vos et al.75 proposed the unsupervised deformable 
registration model DIRNet, which first applies a ConvNet regres-
sor to 2D control points and then uses cubic B-splines as a spa-
tial transformer to output the displacement vector field of image 
pairs, followed by a resampler to achieve deformation of floating 
images. Similarly, Ji et al.76 developed an unsupervised end-to-
end brain MRI image registration framework ADMIR (affine and 
deformable medical image registration), which includes affine 
registration and non-linear registration. When the sizes of the ref-
erence image and the floating image vary, pre-registration is usu-
ally required, while ADMIR can complete end-to-end registration, 
effectively saving registration time. However, this method cannot 
adapt to images of arbitrary sizes. When using this model for reg-
istration, the image size needs to be consistent with the size of 
the model training set. Balakrishnan et al.77 built the VoxelMorph 
model, achieving nonlinear registration of brain MRI images, with 
results superior to the SyN algorithm in terms of Dice score. Al-
though VoxelMorph can accurately estimate dense vector fields of 
image pairs, later work has shown that the model performs poor-
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ly for heart CT data. Zhao et al.78 used VoxelMorph as the base 
network and proposed a recursive cascade registration network, 
which can reduce the number of network parameters and improve 
the registration speed through weight sharing during the testing 
phase. However, this method has difficulty maintaining smooth 
deformation fields during the recursive process. The works are all 
based on high-dimensional image space for network design. These 
algorithms based on deep unsupervised deformation parameter es-
timation do not require labeled data, reducing the requirements for 
data, but unsupervised registration requires selecting appropriate 
image similarity metrics as optimization targets. These similarity 
metrics are mostly based on global grayscale metrics, performing 
well in overall structural registration, but it is hard to accurately es-
timate local deformations. Additionally, the grayscale and texture 

information of multi-modal medical images differ greatly. After 
extracting image features based on deep convolution, how to select 
appropriate features from significantly different features to quan-
tify the similarity between reference images and floating images 
has become a future challenge in multi-modal image registration.

Application prospect
Deep learning has great potential in reconstructing high-resolution 
BOLD images from low-resolution ones.79 By learning and ana-
lyzing many low-resolution BOLD images and their correspond-
ing high-resolution images, deep learning can automatically ex-
tract features and build models to achieve the reconstruction from 
low-resolution to high-resolution.

Fig. 4. Image registration section. (a) Registration results on 7.0-T magnetic resonance (MR) brain images by Demons, hierarchical attribute matching 
mechanism for elastic registration (HAMMER), and H+DP.65 (b) Deep learning-based image registration workflow.
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Improving spatial resolution
Deep learning can infer the missing high-frequency information 
by learning the association between low-resolution and high-reso-
lution BOLD images, thus improving the spatial resolution of the 
images. This will be conducive to more accurately locating and 
analyzing areas of brain activity.

Ameliorating quantitative analysis of brain activity
High-resolution BOLD images provide more detailed and precise 
information about brain activity and aid researchers in better un-
derstanding and analyzing brain function, while deep learning im-
proves the quantitative analysis of brain activity and supplies more 
accurate results by reconstructing high-resolution BOLD images.

Enhancing brain network connectivity analysis
Brain network connectivity is one method for studying brain 
function and diseases. By reconstructing high-resolution BOLD 
images, deep learning provides more accurate and reliable brain 
network connectivity analysis, helping to reveal the structure and 
function of brain networks.

Assisting clinical diagnosis
High-resolution BOLD images can furnish more detailed informa-
tion about brain structure and function, thus having a great impact 
on clinical diagnosis. By reconstructing high-resolution BOLD 
images, deep learning can improve accuracy and efficiency in di-
agnosis and assist in treatment decisions for brain diseases.

The limitations of high-resolution BOLD images
Despite advancements in deep learning for high-resolution BOLD-
fMRI analysis, several interconnected limitations hinder clinical 
translation. Technical barriers include high computational costs 
tied to GPU/TPU dependencies and performance variability across 
heterogeneous scanner environments (e.g., 1.5T vs. 3T systems, 
protocol differences), which compromise model generalizability. 
Data constraints further exacerbate these challenges, as acquir-
ing large-scale, annotated, and demographically diverse datasets 
remains hindered by privacy regulations, ethical concerns, and 
inconsistent imaging standards, risking biased performance in un-
derrepresented populations. Model trustworthiness is undermined 
by the “black-box” nature of many architectures, limiting inter-
pretability crucial for clinical adoption in neurological decision-
making, while reliance on retrospective validation raises questions 
about real-world reliability. Finally, clinical integration faces in-
frastructural mismatches (e.g., incompatible software/hardware), 
regulatory complexities, and workflow disruptions, necessitating 
not only algorithmic improvements but also systemic collaboration 
across technical, clinical, and policy domains to align innovations 
with practical healthcare needs.

Conclusions
This review underscores the transformative potential of deep 
learning in enhancing high-resolution BOLD-fMRI reconstruction 
through super-resolution, segmentation, and registration methods. 
The integration of convolutional neural networks, transformer-
based models, and generative adversarial networks has demon-
strated significant improvements in image quality, accuracy, and 
clinical applicability. These advancements facilitate detailed anal-
ysis of brain function, improve diagnostic accuracy, and enable 

more precise clinical interventions. Nonetheless, practical imple-
mentation remains challenged by high computational costs, limit-
ed generalizability, and data heterogeneity. Future research efforts 
should prioritize the development of standardized protocols, ex-
tensive multi-center validations, and strategies to enhance model 
interpretability and computational efficiency, ultimately bridging 
the gap between technical innovation and clinical practice.
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